学年

教科

質問の種類

数学 高校生

数2の質問です! 240の[ ] で囲んであるところは どこから読み取れるのかを教えてほしいです! よろしくおねがいします🙇🏻‍♀️՞

な直線が,右の図のように異なる2点A, B で 交わっている。 このとき, 原点を0として | △OAB の面積Sの最大値とそのときの点 A, Bの座標を求めよ。 A J B √3 v3 0 考え方 文章題では何を変数にするかがポイントである。なるべく計算がらくにな るように決めるとよい。 本間では,△OAB y 軸に関して対称であるから, 点Bのx座標を x とすると, 2点A, B の座標がx で表せる。 あとはS をxの式で表し,変数xのとりうる値の範囲に注意して, Sの増減を調べ る。 解答 2点A,Bはy軸に関して対称であるから A (-x, 3-x2), B(x, 3-x2) ただし0<x<3 1 とおける。 このとき S=1/2x(3-x2)=-x+3x 2 S'=-3x2+3=-3(x+1)(x-1) ①の範囲において, S' = 0 となるのは, x 0 ... 1 √3 S' + 0 x=1のときであり, Sの増減表は、右のよう になる。 S K 2 よって, Sはx=1で最大値2をとる。 このとき, A, B の座標は (-1,2), (1,2) 放物線y=-x2+12とx軸で囲まれた図形に内接する長方形 □ 練習 239 ABCD の面積S の最大値を求めよ。 ただし, 2点A, B はx軸上にある ものとする。 第6章 微分法と積分法 ... 12 x 0 S' + 0 - 極大 S 32 2√3 増減 最大 よって, Sはx=2で最大値32をとる。 は Sが最大になるときの長方形の頂点の座標 (-2, 0), (2, 0), (2, 8), (-2, 8) BAS 240 1 右の図のように 点Aをとる。 △OAH において, 三平方の定理により AH=√OA2-OH =√32-x2 3 H 0+1=√√91x2 A よって V=AH2×2OH =π(9-x2) x2x =-2π(x3-9x) OHの長さは球の半径より小さいから,xのと りうる値の範囲は 0<x<3 ...... ① (2) V'=-2π(3x2-9)=-6z(x-3) =-6z(x+√3)(x-√3) ①の範囲において, V'=0 となるのは, x=√3 のときであり, Vの増減表は次のよう になる。 x 0 √3 V' + 0 極大 [V 12√3 ... 3 [1] ■ 練習 240 右の図のように, 点0を中心とする半 径3の球に直円柱が内接している。 この直円柱の 体積をVとするとき, 次の問いに答えよ。 (1)点0から直円柱の底面に引いた垂線 OH の長 さをxとするとき, Vをxの式で表せ。 3 また, xのとりうる値の範囲を求めよ。 (2)Vの最大値を求めよ。 H よって, Vはx=√3 で最大値12/3をとる 241 f'(x) =3x2-27a2=3(x+3a)(x-3) f'(x) =0 とすると x=±3a またf(0) = 0, f(3) =27-812 (1) 0<a<1であるから 0<3a<3 よって, f(x) の増減表は次のようになる。 x 0 f'(x) ... 3a 0 + 極小 f(x) 0 3 727-81a2 -54a3

解決済み 回答数: 1
数学 高校生

微分についての質問です。紫で囲ったところと青のマーカーを引いたところが何を目的として何をしているのかわかりません。また、a=-2,0という数字を出したのに-2が全く出てこない意味も理解できないです。教えてください。

3 392 第6章 微分法 例題 204 最大・最小の応用(3) 家 考え方 区間の変化を考えて場合分けをする。 このとき 区間の幅はつねに2であることに注意する a≦x≦a+2 において,関数 f(x)=x4x の最大値を求めよ。 **** 例題20 2/3 解答 f(x)=x-4x より f'(x) =3x-4 x 3 2√3 3 f'(x) = 0 とすると, f'(x) + + 0 x=2√3 3 f(x) 163 f(x)の増減表は右のようになる。 9 0 極大 極小 16/3 f( 最小値が 考え方 グラ 解答 f(x f' 「練習 204] **** (a)=f(a+2) とおくと a3-4a=(a+2)3-4(a+2) 6a2+12a=0 より a=-2, 0 | | 最大 2v3 2√3 (i) a +2≦! つまり x 3 2/3 2√3 am! --2 のとき, 3 3 3 以下の 9 f(a) = f(a+2)+ るときのαの値が場 m 合分けの境界 ( i )は区間の右端 x=a+2 が x=- 2/3 a よう グラフは右の図のようになる. 場合 x =α+2 のとき, 最大値 f(a+2)=a+a+8a(笑) a a+2 ↓最大 2√3 2/3 (ii) a≤3 <a+2 つまり(2 37 x 23-2<am-230 2√3 3 3 3 のとき, Sa a+2 グラフは右の図のようになる. 大量 2/3 x=- のとき, 3 2√3 最大値(-2/3)= 163 最 05(2) 3 ' (i)はx= 大値をとるx)が区 ある場合 a=-2 はこの場合 に含まれ、最大値の 場合分けには関係し ない. まとめて a=0 のとき, 2√3 3 9 0 x f(a)=f(a+2) とな (iii) 2/3 <a≧0 のとき, 2√3 J3 3 グラフは右の図のようになる。 aa+2 x=a のとき, 最大値f(a)=a-4a $301>>0 (iv) a>0 のとき, 2√3 ●最大 グラフは右の図のようになる. 3、 り区間の両端で最 大値をとる. これを 境にして最大値をと るxの値がx=a から x=a+2に変わ る. F x=a+2 のとき, 20 最大値 f(a +2)=a+ba²+8a 1510 x (iv)は区間の左端 x=a 2v3 3 aa+2 がx=0より大きい 場合 まとめた a≦x≦q+3 において,関数 f(x)=x3xの最大値および最小値を求めよ. 809

解決済み 回答数: 1
数学 高校生

微分の問題についての質問です。写真の紫で囲った部分ですが、なぜaがその範囲の時そのようなグラフになるのかの理由がわかりません。また、a=<0,a>0で場合分けしている意味もわからないので教えてください。

**** 値を求 0≤x≤a 20 の範囲 Think 例題 203 上 最大・最小の応用 (2) 2 関数の値の増加減少 391 0≦x≦1 において, 関数f(x)=-x+3ax (a は実数) の最大値を求め 考え方 αの値によって関数が変化するので、 場合分けをする. 関数の最大・最小を調べるには, 極値と区間の両端で の値を比べればよかったので場合分けのポイントは, 極値と区間の位置関係である。 この場合, 極値が区間 に含まれるかどうか考えればよい。 (i) a≦0 のとき 解答 f(x)=-x+3ax より, f'(x)=-3x²+3a=-3(x²-α) f(x)は単調減少する。 したがって、右の図より、 0より。 x²- a≥0 であるから, -3(x-a)≦0 よって、つねに f'(x) ≧0 より 最大 O x 同じ値を の値が 3a-1 x=0 のとき,最大値 f(0) = 0 (ii) a>0 のとき 目とな f'(x) =-3(x+√a)(x-√a) L f(x)のxでの増減表 は右のようになる. x 0 ... f'(x) Na 0 (+) f(x) 0 7 極大 (ア) <1 つまり、0<a<1のとき <√a 区間 0≦x≦1 の中にx=√a が入るから、右の図より x=va で極大かつ最大となり, 最大値 f(va)=2√a (イ)√a≧1 つまり、 y4 2a√a 最大 valx **** ① P.1 P. が半径 f'(x) のグラフを考 えると, (i) a<0 値 a=0 x (ii) a>0 x x = √a と x=-√a で極値をとるが, 0≦x≦1 の区間に x=-va <0 が含ま れることはないので,第6章 x=√a のみ考える. (ア) 極値が区間に含 まれる場合 (イ) 極値が区間に含 まれない場合 a≧1 のとき 最大 区間 0≦x≦1でf'(x)≧0 より, f(x)は単調増加するので 右の図より, x=1のとき, 3a-1 0 1va x 最大値 f(1)=3a-1 (i), (ii)より,求める最大値は, a≦0 のとき, 0 0<a<1, a≥1 0<a<1 のとき 2aa a≧1 のとき, 3a-1 0<√a<1,√a≧1 の辺々を2乗して、 P よって におけ 夏に A その 故 201 Focus 極値が区間に含まれるか含まれないかで場合分け 練習 0x1において、関数f(x)=x-3ax (a≧0) の最小値を求めよ. 203 **** p.398 14

解決済み 回答数: 1
数学 高校生

増減表の左にあるここで、M=αが〜 となっていて、式の次数を下げて代入を簡単にしていると思うんですけど、これってどうやったら思いつきますかね?いっぱい解くしかないですかね、

7 最大 最小 (近畿大薬 座標平面において, 4点A(-1, 1), B(-1, 0)C(1,0), D(2,2)と直線y=ma ぞれa,b,c,dとし, I'd とする. Im で表し,Iの最大値と最 一般には極値で最大・最小になるとは限らない 次の人はささいなことだが, 意外にも効 確かに極値で最大・最小となることを答案にはっきり書くようにしよう. 分数関数の極値を求めるとっておきの方法 f(x)=g(x) lim f( 本間の場合, m は実数全体を動くの 最小値があるとすればそれは極大値・極小値しか考えられないが, limf (m), m118 m [証明] ( {h(x)}2 .. h(x) f'(x)='(x) h(x)-g(x)h'(x) g(a) g'(a) h(a) h'(a) f(a)=g(a)_g' (α) h(a) h'(a) がx=αで極値をとりん (α)≠0ならば,f(α)=g′(a) である. h' (a) がx=αで0になるから,g' (α) h (α) 解答 |-m-1| a= b= 1-ml √m²+1 √m²+1 C= |m| √m²+1 |2m-2| d= であるから, 4点A √m²+1 距離 直線の 7m²-6m+5 I=2+2+c+d2= m²+1 f'(m)=- (=f(m) とおく) (14m-6)(m²+1)-(7m²-6m+5)2m (m2+1)2 6m²+4m-62(3m²+2m-3) ・① 6 M M² (m2+1)2 (m2+1)2 -1±10 3m²+2m-3=0の2解は であり,α, B(a<β) とおく. 3 f (m) は右のように増減し, limf(m)=7 m-too なので, m=αで最大, m=βで最小になる. ここで, m=αが①の分子を0にするから, (14a-6) (a2+1)=(7a2-6a+5)-2a 7a2-6a+5 14a-6 a²+1 2a : f(α)=- = m *** a .. B *** f'(m) + 0 f(m) 17 0 + + 9 3 =7--=7+ =7+(√10-1) α √10 +1 同様にf (B) を求め, 最大値はf(α)=6+√10. 最小値はf(B)=6-10 07 演習題(解答は p.58)

解決済み 回答数: 1
数学 高校生

xが上端や下端にあるとき(与式のような時)そのまま積分は出来ないのでしょうか?もしそうであれば積分できない理由を教えてください。

360 第5章 積分法 例題 164 定積分の最大・最小 (1) ***** =e'costdt の最大値とそのときのxの 0≦x≦2m とする. 関数 f(x)=\ 値を求めよ. [考え方] f'(x), f(x) を求め、 ⇒ 極値と端点での 増減表をかく 解答 f(x)= =Secostat より 0≦x≦2 のとき, f'(x) =0 とすると,x= x=2* 2 TC πT 3 f(x) の値を調べる f'(x)=e*cosx (北海道大) f(x)の最大値・最 D 小値を求める xm における f(x) の増減表は次のようになる. f(x)を求めるには、 分と微分の関係を用いる excosx=0 e≠0 より, cosx=0 例題 165 f(a)=S( (1) f(a) t [考え方] 解答 (1) 積分 ST (2) f( (1){s より π x 0 f'(x) + f(x) f(0)1 20 ... 2π 2π 320 32 (1)(2) |+ したがって、x= 3 27 >0より COS x の符号がf(x)の A f(2π) 符号になる. つまり、f(x) が最大となるのはx=- x=/7/7または 2 x=2のときである. Secostdt=f(e')'costdt=ecost+fe'sintdt -e'cost+e'sint-Se'costat th(AS+ 部分積分を2回行う. よりSecostdt=12e(cost+ sint) + C したがって、f(x)=Secostdt=[2e(cost+sint) π =1/2e(cosx+sinx) 1 Secostdt を左辺に暮 頭する. e=1 2 (1-9)8-2= x=1/2のとき(1)=121203-12 1/2(21-1) x=2のとき、f(x)=12-1/2=1/12(6-1) ここで、よりf(2m)>f ( e* は単調増加で, AA2 SFERON 練習 よって 最大値 1/2(2-1)(x=2) 2π> より 2 [164] (1)関数f(x)=Se(3t)dt (0≦x≦4)の最大値、最小値を求めよ。 *** Andr (2) 関数 f(x)=(2-t)logidt (1≦x≦e) の最大値、最小値を求めよ。 p.391回 (2 Focus 練習 [165] ***

解決済み 回答数: 2
数学 高校生

数2の質問です! 243の(2)で 常に増加する と書いてあるんですが どのようにしてそれがわかるのかを教えてほしいです! よろしくおねがいします🙇🏻‍♀️՞

α = ±4のとき 2個 a<-4, 4<αのとき 1個 1 y=a -4 243 (1) f(x)=(x+x) 2x2 とすると f'(x) =3x²-4x+1= (x-1) (31) f'(x) = 0 とすると x= = 1 3' x≧0において, f(x) の増減表は次のように なる。 練習 242 α は定数とする。 方程式 x +3x²-9x-α = 0 の異なる実数解の 個数を調べよ。 テーマ 111 不等式の証明 xのときx3+6x2+8≧15x が成り立つことを証明せよ。 応用 考え方 不等式 A≧Bの証明 → 差をとって A-B0 を示すのが基本。 x=0のとき,f(x)=(x+6x2+8) 15x の最小値が0以上であることを 示す。 解答 f(x)=(x+6x2+8)-15x とすると f'(x) =3x2+12x-15=3(x2+4x-5) x 0 1 f'(x) 0 + f(x) 8 V 0 7 x0 において, f(x) の増減表は右のようになる。 =3(x+5)(x-1) よって, x≧0 において, f(x) はx=1で最小値0 をとる。 12 したがって, x≧0 のとき,f(x)≧0であるから(x+6x2+8)-15x≧ 0 すなわち x3+6x2+8≧15x 243 次の不等式を証明せよ。 第6章 微分法と積分法 x 0 13 1 f'(x) + 0 0 + 極大 極小 f(x) 01 4 27 0 よって, x20において, f(x) は x=0, 1で wm 最小値0をとる。 したがって,x≧0 のとき, f(x) ≧ 0 であるか ら (x+x) -2x20 すなわち x3+x≧2x2 (2) f(x) = (x+7x+1)-3x² とすると f'(x) =3x²-6x+7=3(x-1)^+4> 0 よって, f(x) は常に増加する。 また, f(0) =1>0であるから,x≧0において f(x)>0 したがって すなわち (x3+7x+1)-3x20 x3+7x +1>3x2 244 ① (12x2)'=24x ③ (x)'=3x2 ② (x=4x3 ④ (x+3)'=4x3 よって, 4x3 の原始関数であるものは x≧0のとき x+x2x2 (2)x≧0 のとき x+7x+1>3x2 245 Cは積分定数とする。 (1) (与式)=-3fdx=-3x+C (2)(与式)=7fxdx=7.1/2x+C=1/2x+c

解決済み 回答数: 1
数学 高校生

数2の質問です! 243の(1)の 〜 のところを わかりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

a = ±4のとき 個 a<-4, 4<αのとき 1個 答 1 y=a 4 練習 242 α は定数とする。 方程式 x+3x²-9x-a=0の異なる実数解の 個数を調べよ。 テーマ 111 不等式の証明 x=0のときx+6x2+8≧15x が成り立つことを証明せよ。 応用 考え方 不等式 A≧B の証明・ →差をとって A-B≧0 を示すのが基本。 x≧0のとき,f(x)=(x3+6x2+8)-15xの最小値が0以上であることを 示す。 解答 f(x)=(x3+6x2+8)-15 とすると x 0 1 f'(x)=3x2+12x-15=3(x2+4x-5) f'(x) 0 + =3(x+5)(x-1) f(x) 8 v 0 x≧0において,f(x) の増減表は右のようになる。 第6章 微分法と積分法 よって, x≧0 において,f(x)はx=1で最小値0 をとる。 したがって, x≧0 のとき, f(x) ≧0であるから ( x3+6x2+8)-15x≧0 すなわち x3+6x2+8≧15x 終 243 (1) f(x) = (x3+x) - 2x2 とすると f'(x) =3x²-4x+1=(x-1)(3x-1) f'(x) = 0 とすると x=/1/31 x≧0において,f(x) の増減表は次のように なる。 x 0 0 1-3 1 f'(x) + 0 - 0 + 極大 極小 f(x) 0 1 4 27 0 よって, x≧0において, f(x) は x=0, 1で wm 最小値0をとる。 したがって, x≧0 のとき, f(x) ≧ 0 であるか ら すなわち (x3+x)-2x2≥0 x3+x≧2x2 (2) f(x) =(x3+7x+1)-3x2 とすると f'(x) =3x2-6x+7=3(x-1)+4> 0 よって, f(x)は常に増加する。 また,f(0) =1>0であるから,x≧0において したがって すなわち f(x)>0 (x3+7x+1)-3x20 x3+7x +1>3x2 244 (12x2)'=24x ③ (x3)=3x2 ② (x)'=4x3 ④ (x+3)'=4x3 よって, 4x3 の原始関数であるものは 243 次の不等式を証明せよ。 x≧0 のとき xxx (2) x≧0 のとき x+7x+1>3x2 245 Cは積分定数とする。 (1)(与式)=-3fdx=-3 dx=-3x+C (2)(与式)=7fxdx=7.1/2x++C=1/2x+c

解決済み 回答数: 1