学年

教科

質問の種類

数学 高校生

どこで間違えていますか? 教えてください

183 基本 例題 118 余弦定理の利用 △ABCにおいて,次のものを求めよ。 (1) b=√6-√2,c=2√3,A=45°のとき (2)a=2,b=√6,B=60°のとき CHART O SOLUTION 余弦定理 a2=b2+c2-2bc cos A C 店内 O p.180 基本事項 2 munsha cos A= b²+c²-a² ...... ・ 2 2bc など ① 三角形の2辺の長さとその間の角の大きさが与え られたとき ② 三角形の3辺の長さが与えられたとき 0 ☐ ●2=O2+□2-20□ cose 余弦定理を用いて, 残りの辺の長さや角の大きさを求めることができる。 (2)Cがわからないからc=d2+b2-2abcosC は使えない。 6,Bに着目して b2=c+a2-2cacos B を使うと,cの2次方程式が得られる。 c >0 に注意。 (半) 解答 (1)余弦定理により α²=(√6-√2)+(2√3 )²-2(√6 -√2)・2√3 cos 45°q²=b2+cz-2bccos A =8-4√3+12-12+4√3=8 cosC= (2√2)2+(√6-√2)-(2,3) 2 8+8-4√3-12-4(3-1)=-12 8(√3-1) 2 OS (1) C √√6-√2 a 22 45° A 2√3 a²+b²-c² B cos C= 2ab (2) C √6 A 60° B C ◆b2=c2+α2-2ca cos B a0 であるから a=2√2 また どちらの定 22√2 (√6-√2 カ)において = 8√3-8 よって C=120° Enia Ania ■ (2) 余弦定理により (√6)²=c2+22-2c2cos60° よって 6=c²+4-4c 1 整理して c2-2c-2=0 これを解いて |c=1±√3 c> 0 であるから =1+√3 (+8) S 二夫 「解の公式から c=-(-1) ±√(−12−1・(-2) 4章 14 正弦定理と余弦定理

解決済み 回答数: 1
数学 高校生

答え合わせお願いします🙇‍♀️🙏💦

Ⅱ. 次の英文の空欄 ( 11 ) から ( 20 )に入る最も適切な英単語を, a. ~d.の中から 1つ選びなさい。 解答は解答用紙1枚目 (マークシート方式)の所定の解答欄にマークし なさい。 2893 000 Lego bricks. (Image source: Wikimedia Commons-CC license) Car made from Lego bricks. Lego has unveiled its first bricks made from recycled plastic bottles and ( 11 ) that it hopes to include the pieces in sets within two years. The prototype 4x2 bricks have been made from PET plastic from ( 12 ) bottles with additives to give them the strength of standard Lego parts, and are the result of three years of ( 13 ) with 250 variations of materials. It has already ( 14 ) plans to remove single-use plastic from boxes, and since 2018 has been ( 15 ) parts from bio-polyethylene (bio-PE), made from sustainably sourced sugarcane. These parts are bendy pieces, such as trees, leaves and accessories for figurines. Tim Brooks, vice-president for environmental ( 16 ) at Lego Group, said the biggest challenge was "rethinking and innovating new materials that are as ( 17 ), strong and high (18) as our existing bricks and fit with Lego elements made over the past 60 years". He added: "We're committed to playing our part in building a sustainable future for generations of children. We want our products to have a positive ( 19 ) on the planet, not just with the play they inspire, but also with the materials we use. We still have a long 20 ) we are making." way to go on our journey, but are pleased with the Hillary Osborne, "Lego develops first bricks made from recycled plastic bottles", The Guardian, 23 June, 2021. (https://www.theguardian.com/lifeandstyle/2021/jun/23/lego- develops-first-bricks-made-of-recycled-plastic-bottles) (-)

解決済み 回答数: 1
数学 高校生

解答の3行目まででの質問ですが、r≠1を確認する時との違いは何ですか?

考え方 [Check] 例題292 分数型の漸化式 (1) 解 OF CO Focus a=- 1 2 で定義される数列{an}の一般項an を求めよ. SSD OPTID 9 an の逆数 India ( 3700 これまでに学んだ漸化式の解法が利用できないか考える ここ では,漸化式の両辺の逆数をとって考える. 1 - を 6, とおくと、与えられた漸化式は,例題285 an (p.505) のタイプ (an+1=pan+q) となる. An an+₁=₂an_) (s) +=+ 2-an an+1=0 と仮定すると, an=0 これをくり返すと, An-1=an-2 =......=a₁=0 となり, 4=1/12/30 と矛盾するので, ≠0 ここで,(bm= よって, 与えられた漸化式の両辺の逆数をとると 1 2-an 2 ・1 an+1 an an 1 an 3 漸化式と数学的帰納法 *** = とおくと, an= = 1 2-1+1 an 0 (n ≥1) SINCE+an+1 = 1 bn+1-1=2(6n-1),b1-1=1 したがって, 数列{bn-1} は初項1,公比2の等比数列だから、 bn-1=1・2n-1 より, \bn=2n-1+1 6n+1=26-1,61= -=2 a 逆数 OVE となり,n=k+1 のときも成り立つ. よって、すべてのnに対して, an=0 が成り立つ. (南山大) (2014 &+8+8= (- a1 1歳8 + spail it? an 2-an an=0 -=0 トキ」を確認するときとの α=2α-1 より, α=1 An stato stansiy 1=27-1+1 より, an=2n-1+1 分数型の漸化式は逆数で考える 13233) 48ð 注例題292 で an=0 は, これから学ぶ数学的帰納法 (p.532〜) を用いた証明もでき Sant 3·0⁰ る. RITIDS <a≠0 の数学的帰納法による証明 > Cadd n=1のとき, a1=- ≠0 +0¹ 26832203_²5/S5/ESKAO3**# 53* =kのとき, αk=0 と仮定すると, n=k+1 のとき, ak+1= AT 513 ak 2-ak Cas 33 まし 治温室また。分数型の漸化式は,例題292のように逆数を考える方法だけでなく,例題 D 293 (p.516) のように特性方程式を利用する解き方もある。 E

解決済み 回答数: 1