学年

教科

質問の種類

数学 高校生

赤線までは分かるんですがそれから下が分かりません。 分かりやすく教えてください。

L(0, 0), M(atc, 2), N(_2, 2) よって,中線 AL, BM, CN を 2:1に内分する 点の座標はそれぞれ (5. §), -c+(a+c) 3 c+(a-c), 2+1) 0+6 0+b 2+1/' c>0, (a²+B2+4)c²>0, (ab+2) ≧0であるから (2+AC2)(2+BC2)-2AB2 > 0 2AB2 < (2+AC2)(2+BC2) となり, 一致する。 すなわち, △ABCの3つの中線は1点で交わる。 (2) 直線AB をx軸にとり、点Cをy軸上にとると,各頂点の座 標は,A(a,0),B(b,0), C(0, c) と表すことができる。 ただし,α,bは同時に0になることはなく, c=0とする。 このとき (2+AC2)(2+BC2)-2AB2 =(2+α²+c²)(2+b°+c²)-2(a-b)2 =c¹+(a²+b²+4)c²+(a²+2)(b²+2)-2(a-b)² =c¹+(a²+b²+4)c²+a²b²+2a²+26² +4-2(a²-2ab+b²) =c¹+(a²+b²+4)c²+a²b²+4ab+4 =c¹+(a²+b²+4)c²+(ab+2)² (-₁,0) a+b1 2 HINT (1) 三角形の頂点をA(a, a2), B (61, bz), C (C1, C2) とする。 (2) 正三角形の対称性を利用して, 頂点の座標を決める。 B (1) 三角形の頂点の座標を A (a1,a2), B(b1, 62), C (C1, C2) と し, 辺AB, BC, CA の中点の座標がそれぞれ (1, -1), (2,4), (31) であるとする。 x 座標について =1, よって b2+C1=2, 22 cital=3 2 2) 201 すなわち EX 次の条件を満たす三角形の頂点の座標を求めよ。 Ⓡ51 (1) 各辺の中点の座標が (1,-1),(2,4),(3,1) 08:0 (2) 1辺の長さが2の正三角形で、1つの頂点がx軸上にあり,その重心は原 中 AC (a,( ←cに 整理 ←(右) → (2 付

回答募集中 回答数: 0
数学 高校生

(1)の赤線部の2という数字はどこから来たのでしょうか?

る。 実戦問題 14 2次不等式が成り立つための条件 f(x) = x + 2kx +3k+4, g(x) = -x+4kx-10 について (1) 0≦x≦2におけるf(x) の最小値をm とすると k< アイ のとき m=ウ k+ I アイ Sk<オのとき m= カ 1k²+キ k+ク k≧オのとき m= ■ケ |k+ コ 2 であるから, 0≦x≦2を満たすすべての実数xについて, 不等式 f(x) > 0 が成り立つような定数kの値の範囲は k> サシ である。 (2) すべての実数xについて, 不等式 f(x) > g(x) が成り立つような定数kの値の範囲を求めると 3TR567ad ス セソくん< ス +√ セソ である。 次に, すべての実数 X1, X2 について 不等式 f(x1) > g(x2) が成り立つような定数kの値の範囲を求めると, タチ <<テである。 ■ツ 01 4 (i) k<-2のとき 430 2-k (1) f(x)=x2+2kx+3k+4= (x+k-k+3k +4 (i) -k > 2 すなわちん <-2のとき m = f(2) = 7k+8 (ii)0<-k≦2 すなわち -2≦k<0のとき Ques m=f(-k)=-k+3k+4 0 KE y=f(x), ps. 0 com (i) -k ≦ 0 すなわちん ≧0のとき m=f(0)=3k+4 0≦x≦2を満たすすべての実数x について, 不等式 f(x) > 0 が成 り立つための条件は m>0 であるから NIW & e (ii) -2≦x<0 のとき 8 (i) k<-2のとき m=7k+8>0 より k> -- (0³200+ 0 nix)=0a0+049 7 eb y=f(x)! k <-2 であるから 解なし (ii) -2≦x<0 のとき m = k+3k+4>0 より -2≦x<0であるから -1くん<00miz -1 <k < 4 4 O-k 2 (i) k≧0のとき m=3k +4 > 0 より k> - TLV 3 ん≧0であるから (2000pied ( ≧0のとき Bans k≧0 Av (i) ~ (i) より 求めるんの値の範囲は k> -1 (2) h(x)=f(x) - g(x) とおくと ·SastS+ h(x)=(x2+2kx+3k+4)-(-x+4kx-10) =2x²-2kx+3k+14 = 20 = 2(x - 12 )² - 12/²2 +3k +14 すべての実数xについて不等式 f(x) > g(x) が成り立つとき h(x) = f(x) = g(x) > 0 k² ・よって, +3k + 14 > 0 より k²-6k-28 <0 2 12 na 3-√37<k<3+√37 これを解いて 次に g(x)=-(x-2k) +4k²-10 すべての実数 x1, x2 について不等式 f(x1) > g(x2) が成り立つとき (f(x) の最小値)> (g(x) の最大値) IS nud よって, ゆえに k2+ 3k +4 > 4k² -10 より 5k²-3k-14 < 0 (k-2) (5k+7) <0 7 したがって 求めるんの値の範囲は <<2 15 攻略のカギ! Key 1 つねに成り立つ不等式f(x) は, (f(x) の最小値) > p とせよ (1) すべての実数xについて, 不等式f(x) > g(x) (2) すべての実数x1, x2 について, 不等式f(x1) > g(x2) 解答 Key 1 Key 1 Key 1 x iy=f(x) 2 x 2x²-2kx+3k+ 14 = 0. --の判別式をDとして D 124 =k-2(3k+14) < 0 からんの値の範囲を求めても よい。 y=f(x) X2 (f(x) g(x) の最小値) > 0 ⇒ y=g(x) (f(x) の最小値)> (g(x)の最大値) 2章 2次関数 35

回答募集中 回答数: 0
数学 高校生

じっくり考えたのですがまったくわかりません、どなたか優しい方やり方教えてくれませんか🙏💦 1次関数の問題です

高校3年 スパイラル学習く数学> No. 16 学習日:平成 年 月 番 氏名 日 クラス ※このプリントは、2学期期末テスト、学年末テストの出題範囲になります。なくさないようにきちんと保管しましょう。 ※裏面は必ずしも表面と同じ内容とは限りません。 例題1次関数 y=-2x+6 について 18(1) xの変域が 0Sx<2 のとき,yの変城を求めよ。 (2) yの変域が0Sy£4 のとき、xの変域を求めよ。 1 次 関数 地上の気温が15℃のとき,地上xkm の高さの気温をy℃とすると,yはおよそ次の式で y=-6x+15 ただし、xの変域は x20 とする。 基本 解答(1) x=0 のとき Point グラフをかいて、それ ぞれの変数のとる値の 範囲を調べる。 y=6 表される。 ズ=2 のとき 右の図から 25ys6 闇 34 y=2 (1) このxとyの関係をグラフに (2) 地上から1km 高くなるごとに、気温は何℃下 かけ。 がるか。 (2) y=0 のとき ズ=3 y=4のとき 右の図から 13r53 闇 ズ=1 15 (3) 地上2km, 3km の気温はそれぞれ何°℃か。 10 (1) 関数 y=3x-1(-3<x<2) に おいて、yの変城を求めよ。 (2) 関数 y=-2x+5 (pSx$q) において、 yの変域が -3yS7 であるとき,p,q の値を求めよ。 問題 5- 36 (4) 気温がちょうど0°℃であるのは,地上何 km か。 5x 例題 yはxの1次関数であり、x=-3 のとき y=14, x=3 のとき y=-4 であるという。 17 この1次関数を求めよ。 解答求める1 次関数を y=ax+b とおく。 14=-3a+b … ) ー4=3a+b Point 1次関数は 条件から *キャャキ () y=ax+6 とおける。 1 14=-3a+も の +) -4 3a+b 10m 26 右の図において,点Aは直線 y=x と y=-3x+4 の交点である。 また、直線 y=ー3x+4 とy軸との よって b=5 アー/ Hint 応用 よって a=-3 B (1) 2直線の交点の座標 は,連立方程式の解で Tに代入して 14=-3a+5 ゆえに、求める1次関数は y=ー3x+5 開 37 表される。 交点をBとする。 次の条件を満たす1次関数を求めよ。 (1) x=2 のとき y=8, x=-1 のとき y=-1 (2) 線分OBをAOABの 底辺として考える。 問題 (1) 点Aの座標を求めよ。 o 35 yー-3x+4 (2) 変化の割合が-3で、x=5 のとき y=-7 (2) AOAB の面積を求めよ。

回答募集中 回答数: 0