学年

教科

質問の種類

数学 高校生

対数についての質問です。⑵においてm,nを正の整数と限定しているのは何故ですか?正の整数でなければ、左辺は偶数右辺は奇数にならないのですか?よろしくお願いします。

Think 914 例題171 無理数となる対数 2 対数と対数関数 339 **** log23の値を 2'=8, 3'=9,3243,2256 を利用して, 小数第 1位まで求めよ. () 10g103 が無理数であることを証明せよ. 103 の値を求めるので,対数をとるときは 底を2にするとよい . 考え方 (1) 与えられた条件を使って不等式を作る. (津田塾大改) <対数の定義> logaM=r⇔ α'=M (2)背理法を使って証明する. 有理数、無理数の定義は忘れないようにしよう。 (1)39 より 底2で両辺の対数をとると, log232=log29 を 解答 2 したがって 210g23=10g29より, 10g23= 2 したがって, 510g23=10g2243 より また,3243 より,底2で両辺の対数をとると, log235=log2243 log29 log28 log223 3log22 22 -=1.5 98 より, log23= log2243 log2256_810g22 5 5 -=1.6 5 以上より, log29>10g28 (底) >1であるから 対数を消せるように 2Dを利用する. 243 256 より, log2243<log256 1.5<logz3 <1.6 も同様 よって, 10g23の小数第1位までの値は, 1.5 m (2)10g 103 が有理数であると仮定すると, 10g103>0 だか ら,互いに素な正の整数m, n を用いて, 1.5 1.6 log23=1.5... 10が1より大き log 103= m n く、真数3が1より m とおける. 対数の定義より, 10 = 3 大きいので, log103 0 両辺を乗すると, 10m=3" ここでmnは正の整数だから, 左辺10" は偶数, 右 10 は2と53" は 辺3" は奇数となり 3しか素因数をもた の よって, 10g103 は無理数である. ない (偶数 奇数 Focus 無理数の証明 有理数と仮定して背理法 m 有理数は (m, n は互いに素) とおく n 第 5 章 練習 171 (2) 10g37 は有理数でないことを証明せよ。 (1)10g102 の値を2°512,21024 を利用して, 小数第1位まで求めよ。 (慶應義塾大) →p.34817 *** また

解決済み 回答数: 1
数学 高校生

常用対数 (2)が分かりません( ˘•ω•˘ ).。oஇ そもそも何進数っていう言葉の意味や考え方からあんまり理解できてないのでそこについても説明していただけるとありがたいです😭 ご回答よろしくお願いします🙇🏻‍♀️⸒⸒

304 基本 例 189 常用対数と不等式 logo3 0.4771 とする。 (1)3が10桁の数となる最小の自然数nの値を求めよ。 00000 (類福岡工 (2) 3進法で表すと100桁の自然数Nを, 10進法で表すと何桁の数になるか 指針 (1)まず,3" が10桁の数であるということを不等式で表す。 (2) 進数Nの桁数の問題 不等式数 N <数の形に表す ・・・・・・チャート式基礎からの数学A 基本例題 150参照。 に従って、問題の条件を不等式で表すと 3100 1 N <3100 ......① 10進法で表したときの桁数を求めるには, 不等式① から, 10″N < 10" の形を導 きたい。そこで,不等式① の各辺の常用対数をとる。 各辺の常用対数をとると (1)3" が 10桁の数であるとき 10°31010 解答 9≤n log103<10 ゆえに 9≦0.4771n<10 9 10 よって ≤n<⋅ 0.4771 0.4771 したがって 18.8n<20.9...... この不等式を満たす最小の自然数nは n=19 Nがn桁の整数 →10-1≤N<10° 基本 A 町 比べ 合. ただ 解 B (2)Nは3進法で表すと100桁の自然数であるから 3100-1100 すなわち 399 N < 3100 各辺の常用対数をとると 9910g10 3 log10N <10010g103 99×0.4771 ≦log10N <100×0.4771 47.2329 ゆえに すなわち log10N <47.71 よって 1047.2329 N1047.71 ゆえに 1047 <N<1048 この不等式を満たす自 数は, n=19, 20である が,「最小の」という条 があるので, n=19 したがって, Nを10進法で表すと, 48桁の数となる。 別解 10g103=0.4771 から 100.4771=3 ゆえに, 3% N <3400 から (1004771) ≤N < ( 100.4771) 100 1047.2329 N1047.71 よって ゆえに 1047 <N<1048 したがって, Nを10進法で表すと, 48桁の数となる。 <p=logaM⇔d=" 練習 log102=0.3010, log103=0.4771 とする。 189 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるような自 然数nは何個あるか。 〔類 北里大) (2) logs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 またこの結果を 利用して, 4' を9進法で表すと何桁の数になるか求めよ。

解決済み 回答数: 1
数学 高校生

青い線の移行って何でこうなるんでしたっけ?解説お願いします🙇‍♂️

引 69 対数の計算(I) 次の各式の値を計算せよ. 9 (1) log: 10+loga-log: 3 2 5 3 1 8 4 9 (2) 2log2 12- log2510g2√3 (3)10g102)+(10g105) +10g105・10g10 8 精講 対数は,1とか2とか普通に使っている数字を「10gar」の形で表す 新しい数の表現方法です. なぜ、このようなワケのわからない表し方をする必要があるのかと 思う人もいるでしょうが,まずは慣れることです. そのためには,ある程度の 量をこなすことが必要です. 何度も何度も間違いながら演習をくりかえし, 自 然に使えるようになるまでがんばることです。 <基本性質> a>0, a≠1, x>0 のとき I. y=logax x=a" (定義) II. 10gaa=1, 10ga1=0 注 y=logaxにおいて, a を底, x を真数 と呼びます. <計算公式〉 > 0, a≠1, M > 0, N> 0 のとき, I. logaM+logaN=logaMN II. loga M-logaN=loga M N III. loga M=ploga M (p: 実数) =210gz223-11 (log:8-log29) 1210g23 -- =2(21og22+logz3)-(3-21ogz3) -log23 =4+210ga3-4+1/loga3-1/2l05.3 -4-3-13 注 このように, 真数を素数の積の形で表し, 計算 するところがコツです. (3) 10g102=a, 10g105 = 6 とおくと 与式 = a +6+3ab =(a+b)-3ab(a+b)+3ab ここで, a+b=10g102+10g105=1 だから 与式=1-3ab+3ab=1 注 対数計算には, 積に関する公式がありません. たとえば, 10g103 10g 10 2 はこれ以上簡単になりま+ ポイント 対数計算は, ① 底をそろえて ② 真数を小さく 次の公式を用いる I. logaM+10ga N = logaMN M II. 10ga M-10gaN=10ga N III. loga M=ploga M 解答 109 109 109 3 5 (1) log2- +log21 --log2 =log: (10×3+) 5 ÷ = log(1x1x2/12)=log21=0 3-5 23 注 底がそろっていないときは,次の70で学びます. 底はすでそろって いる 公式Ⅰ Ⅱ 基本性質Ⅱ 演習問題 69 1 8 (2) 2log2 12-- -log2 -5log2√3 このままでは計算公 9 式 I, II は使えない 次の各式の値を計算せよ. (1)(10g102)+(log105)(10g104)+(log105)2 (2)log(√2+√3-√2-√3 )

解決済み 回答数: 1
数学 高校生

対数とその性質についての質問です。 写真で、水色マーカーで示した部分の変形がわかりません。log3の5はそのままだと思うのですが、1/log3の2がlog2の3になるのかわかりません。

log216 log224 4 log28 log2233 160 サクシード数学Ⅱ log327 of 803 2) log35 log, 27=log35.- (3)10ga log35 = log327=10g333=3 log27 10g216 log:7log716=- log28 log27 logg 7・10g716=- ..log716 10g78 1 Sols-log;23 -10g724 210g22 + log23 +10g25 log22+2log25 2 +10g23 + log25 1 1+2log25 3log,2 410g2=1 Jel =logx+10ga√y-log。ミス =10gax + q +1/210gy-1310822 したがってogx+ 1+ =p+ r 2 すなわち 510 10g5o60= log260 log250 log2 (22×3×5) log2 (2x52) 1 xy はよ 513(1) 図 210g10 3 + 210g log 10 21 210g10 (3×7) log 1021 (2) [図] このグラフは,(1)の [参考 て対称である。 x= logx log4x -- 1 log44 (2) ここで log25= log35 (1) log32 log43.log925.log58 10g23.10g35=ab log23 log225 log28 よって log 50 60 = 2+a+ab 1+2ab log24 10g29 log25 1 0 1 4 x log23 log252 log223 511 指針 log222 10232 log25 Hog23 210g25 3 3 a 2 2log23 log25 2 対数の定義 α = M logaM=pから, logaMMが成り立つ。このことを利用する。 (1)5108577 Ya+ (3) 〔図] このグラフは,(1 に2だけ平行移動したもの 20 log2/10g39 10g33 立 log32- 1 log39 log 2 log34 a 4logax = a 10gx4 x4 (4) y=log4- =- -log4x x log 32\ 2 1 LOS g32- 2 log32 2log32 (3) 81 log310 =(34) log3 10 = 34log 3 10 =3108310 Jei このグラフは,(1) のグラ である。 32 3 3 =- =10=10000 09: -0 210g32 Ug7 (5×7)-(10g57+10g75) (3) 4 参考 与えられた式をMとおき, 両辺の対数をと って解いてもよい。例えば,(2)は次のようにな (4 y (SI+1) - ) ( log75+10g77 ) る。 -log,5) (2) O 2 3 6 x -5+1)-(log,7+log,5) 7.log75 +10g57 ng75 ) M=a4logax とおく。 aを底として両辺の対数をとると って log, M=log, a 4loga x (5) loga M410g xl0gaa 七 =10g y=log44x= [図]

解決済み 回答数: 1
数学 高校生

数II、対数です (2)について、前半2行は理解できたのですが、 写真下線部以降、何をしているのかわかりません。 引き算をしているのはなぜですか? 解説お願いします

☆☆☆ あ る。 る。 193 対数の大小 次の各組の数の大小を比較せよ。 (1) log25, 1+log2 3 log430 基準を定める 底も真数も異なると、比較しにくい。 底 (2) log23, logs 2, 対数は底の変換公式で底をそろえることができる。 â>1のとき M<N⇔logaM logaN (0 <a <1 のとき M<N⇔ logaM > loga N Action» 対数の大小比較は,底をそろえて真数を比較せよ (1) 1+log2 3= log22+log23=10g26 log430 log230 log24 = 110g230= 10 = log2√30 2 530 <6 であり,底は2(1)より 2-3 頻出 ★★☆☆ 不等号の向きが変わる。 底を2にそろえる。 多項 4 |式は1つの対数で表す。 √25√30 √36 より 5<√30 <6 章 12 2 対数関数 log25<log2√30 < log26 よって log25<log430<1+log230 レース)(+α) (2) log2 3 > log2 2 = 1, log2 <log33 = 1 下の Point 参照。 って log2 <1<log2 3 01-log23>1, (S) 2 次に, 10g32と > - 14 の大小を比較する。 log3 2 = <1 より S log23 a log32<log23 2 3-log: 2 = 2-log, 3-log32 gol gok (of-xとしてもよい。 210g33号であるから, 1 真 = 3 したがって MN logs 2< <log23 == 3 (log: 32-logs 2³)-3 1/2(logs9-10g38) > 0 2 3 2と3号 それぞれ3乗 0 = (アーx) (S+x) 01 して2°=8,(3号)=9 より23% 底は3 (1) より N 3 立つときにで log: 2<log; 3 (got としてもよい。 太郎さんの解答で、 Point.. 対数の大小比較 対数の大小比較は,次の (ア)(イ), (ウ) を利用する。い 底をそろえて,真数の大小を比較する。 (Sr) gol = (- (イ)真数と底の十 (ウル 小関係が分かる。

解決済み 回答数: 1