学年

教科

質問の種類

数学 高校生

(2)の変形が分かりません。

3等式・不等式の証明 71 3/18 例題 34 絶対値を含む不等式の証明 **** 次の不等式を証明せよ. (1)|a + b|≦|a|+|6| 第1章 (2)|x|-|y|≦|x+y| 「考え方」 絶対値を含むので、このまま差をとるよりも、 例題29のように, 両辺を平方して差をとれば+d) よい. <絶対値の性質> •|A|= A≧O, B≧0 のとき,A≧B ⇔ AB m である. また, A≧A の性質を利用する. 解答 'A≧0 のとき, |A|=A A>A) \A<0 のとき, |A|> 0, A<0 より |A|>A (2)(1) 不等式を利用する. • |A|2=A² A (A≧0) -A (A<0) ・|A||B|=|AB| ・A≧0, A≧A,|A|≧-A -A=A |x|-|y|=|x+y|→|x|≧|x+y|+|y|であることから,|x|≦|x+y|+|y| を示すと (1)|a+b|≧0, |a|+|6|≧0 より 平方して比べる. (|a|+|6|)-|a+b12 121,=|a|+2|a||6|+|6|-(a+b)2 1 =a²+2|ab|+b²-(a²+2ab+b²) =2|ab|-2ab=2(|ab|-ab) LETR |a|0|6|≧0 より, &ta+b≥0 14||B|=|AB| 0=104²=4² ここで|ab|≧ab より, ab-ab≧0となる. よって、不等式 |a+b|≦|a|+|6| が成り立つ. る. (2)|x|=|x+y-y|=|(x+y)+(-y)」とすることが できる. (1)より (大立公園) Focus 注 S AIZA を利用す A=ab と考える. (x+y+(-)slatelet(1)の結果を利用 x+y+lyl sex したがって, |x|≦|x+y|+|y| よって、不等式x-yxtyが成り立つ。 よって、 a=x+y, b=-y y|を左辺へ移項 立つことを示 |A|>|B| の証明 |A|-| B|=AB'> 0 を示す 例題 34 (1)は(面倒であるが) 次の場合に分けて証明することもできる。 (i) a≥0, b≥0, a+b≥0, (ii) a<0, b<0, a+b<0, (iii) a≥0, b<0, a+b≥0 (iv) a≥0, b<0, a+b<0, (v) a<0, b≥0, a+b≥0, (vi) a<0, b≥0, a+b<0 (2)は,(i) |x|-|y|<0 (ii) |x|-|y|≧0 の場合に分けて証明することもできる。 注》(1),(2)より|a|-|0|≦la+b|≦|a|+|6| が得られる.これを三角不等式という. 練習 31 次の不等式を証明せよ! ((1)については例題 34 (1) を利用) |+|| (g)

解決済み 回答数: 1