学年

教科

質問の種類

数学 高校生

(3)の問題です。なぜa=25/4を境に場合分けをするのかが解説を読んでもわかりません。どなたか教えていただけないでしょうか。

完答への 道のり AB 正三角形AQR ができる条件を場合に分けて © E が点 Q, C が点Rとなる確率を求めることができた。 正三角形AQR ができる確率を求めることができた。 白玉だけを取り出して正三角形AQR ができる条件をもれなく考えることができた。 F 白玉だけを取り出して正三角形AQRができる確率を求めることができた。 条件付き確率を求めることができた。 B4 図形と方程式 (40点) 座標平面上に円 C:x2+y2 = 25 と直線l: x+2y=10 があり、連立不等式x+2y10 fx2+y2 S25 A の表す領域をDとする。 (y≥0 (1)円Cと直線lの共有点の座標を求めよ。 また, 領域Dを図示せよ。 (2) (6,0)を通る直線の中で,円Cと y>0の範囲で接するような直線の方程式を求めよ。 (3)aは 6≦a≦10 を満たす実数とする。 点(x, y)が領域D内を動くときの最小 値を とする。 αの値で場合分けをして, mをαを用いて表せ。 x-a 配点 (1) 10点 (2) 12点 (3) 18点 解答 (1) C:x+y2 = 25 ① l VA l: x+2y=10 C ②より x=-2y+10 ②' ②'を①に代入して (10-2y) +y2=25 2-8y+15=0 (y-3)(y-5)=0 y=3,5 44 - 15 (4, 3) 0 5 x -5 円Cと直線lの共有点の座標は、 連立方程式①、②の実数解である。 解答ではxを消去して yの2次 方程式を導き、それを解いて共有点 のy座標から求めたが,yを消去し てx座標から求めてもよい。

未解決 回答数: 1
数学 高校生

複素数平面の問題なのですが、(3)で4P3などで求めているのは何故でしょうか?4C3では駄目な理由を教えて頂きたいです。

軸上に あるから =, 総合 α=sin- π +icos 100 とする。 (1) 複素数αを極形式で表せ。 ただし, 偏角0 の範囲は00<2とする。 (2) 数学C245 2個のさいころを同時に投げて出た目をk, lとするとき = 1 となる確率を求めよ。 複素数である確率を求めよ。 (3)3個のさいころを同時に投げて出た目を k l m とするとき, ah, a, a” が異なる3つの 2 π πで、 10 5 5 2 01/03x<2であるから ※極形式は T π 2 - 2 5 [山口] →本冊 数学C例題107 108 Cosshの←一般に、OBA F = sin(x)+icos (12/31) =conf/x+isin/3d 2 TC とき sinβ+icos β の = cos(-8)+isin(-8) (2) kl は整数であるから 2 kl 5 -(cosx+isinx)=cos 2+isin 24 =COS 2kl 5 2kl 5 よって,=1となるのは, nを整数として 2kl ←ド・モアブルの定理。 ここで, 2個のさいころの目の出方の総数は されるとき,つまりkl=5nから, klが5の倍数のときである。 5 π=2nと表 ←1=cos2n+isin2na ( n は整数) 62通り が5の倍数にならないのは、ん、1がともに5の倍数でないと余事象の確率を利用す きであり,その目の出方は 52 通り したがって、求める確率は 52 11 1- = 62 36 (3)3個のさいころの目の出方の総数は 2 -л+isin- acos 3 12 s 5 なんで6かけている?lis る。 k, lのとりうる値は, どちらも1,2,3,4,5, 6のうちいずれか。 この 6つの目のうち,5の倍 数は5のみ。 総合 2 π =COS 137) = cos 27+isin 127 ・π =COS 5 nisin 2 =a 5 また, arga= -πであり, argum= 25 ( は整数)から y 1 a=a a² 8 arga²=л, arga³=л, arga= -π, argo=2π -1 /x 0 a³ a 6 5 0<arga=arga<arga²<arga³<arga¹<arga³=2 ゆえに,α'(=α),2,3,α^,α はすべて異なる値である。 よって,ak, a', am が異なる3つの複素数となるのは,k, L, mがすべて異なり,かつ1と6を同時に含まない場合である。 それは次の [1][2] の場合に分けられる。 [1]1も6も含まれない場合 (*) (7. 1. 2) klmは2, 3, 4, 5 のいずれかの値をとるから、この場合1または6が, の数は 4P3=4・3・2=24(通り) [2]k,l,mに 1 6 のいずれか一方が含まれる場合 k l m のいずれか1つが1または6の値をとり 残りの2 つは2,3,4,5のいずれかの値をとるから,この場合の数は 3・2・4P2(*)=3・2・12=72(通り) かくりつ 復習 Chじゃない?? のどこにくるかで Ct 通 り 1または6のどちら かで2通り、残りの2か 所に 2, 3, 4, 5から2つ を選んで並べるからPz 通り。

未解決 回答数: 1
数学 高校生

ヨウ化水素の物質量の変化の図示が分かりません

基本例題34 電離定数 0.030mol/Lの酢酸水溶液の酢酸の電離度α および水素イオン濃度を求めよ。ただし、 酢酸の電離定数を2.7×10mol/L,αは1に比べて非常に小さいものとする ■解答 188 【mol/L] の酢酸水溶液において、 酢酸の電離度がαのとき、電離す る酢酸分子は co[mol/L] なので, 生じる酢酸イオン、水素イオンも ca[mol/L] となる。 電離平衡時の 量的関係を調べ, 電離定数K の 式に代入してc, α と K の関係 式をつくり、 αを求める。 このと き、実際にαが1に比べて非常に 小さいことを確認する。 目安は α<0.05程度である。 はじめ 平衡時 0 ca (mo < 1 であり, 1-α=1 とみなされるので, 電離定数は。 ように表される。 CH₂COOH CH3COO- +H* a = √ したがって, C c(1-a) [CH3COO-] [H+] Lah Jo Ka= [CH3COOH] 2.7×10-5 0.030 [知識] グラフ 323. 平衡状態と平衡定数水素1.00mol とヨウ 素1.40molを100Lの容器に入れ、 ある温度に保 った。このときの水素の物質量の変化は、図のよ うであった。 (1) 平衡状態における水素, ヨウ素およびヨウ 化水素のモル濃度を求めよ。 (2) 減少するヨウ素および生成するヨウ化水素 の物質量の変化を図示せよ。 (3) この反応の平衡定数を求めよ。 HOKUESE [H+]=ca=0.030mol/L×0.030=9.0×10mol/L. $5 (1) 3 Tom T. &IH (8) IH A |基本|問題| 119 つ選べ。 (ア) N2O4 と NO2 の濃度の比は1:2である。 (イ) N2O4 と NO2 の圧力(分圧)の比は1:2である。 (ウ) N2O4 の濃度は一定となっている。 (エ) 正反応と逆反応の速さは等しい。 (オ) 正反応も逆反応もおこらず、反応が停止している。 2NO2 の反応 [知識 322. 平衡状態四酸化二窒素 N2O4 をある温度, 圧力に保つと, N2O4 がおこり,平衡状態に達した。 平衡状態に関する次の記述のうちから,正しいものを [mol] 2.0 物質量 ca 1.5 (ca)² c(1-a) =0.030 SCIEN 49 kieuốc (S)(ung Fossh — (R),H&+ (2);M (1) SUL (1) HOOSH+HOOT,HO (1) MOOOHO (SE 1.0 =ca² 0.5 0 324. 平衡の量的関係 一定温度で平衡状態 CHICOOH +c 酢酸 H この温度にお 酢酸1.00mc で平衡状態に達 時間 - 例題 F (1) (2) 325. 反応量と解 入れると、二酸 をP[Pa], 四 N2O4 (気) 平衡状態 平衡時⊂ この反 (1) (2) (3) [知識] 326. 条件変 よって,平 (1) 302 N2+ 2HI (4) 2SC (5) NH (2) (3) 327. 平 Im 2SO (1) SC の (2

回答募集中 回答数: 0
数学 高校生

28. 成り立つことを証明せよ、ということは成り立つことを前提にしていいんですよね?(成り立つことを前提にした式を用いて計算しました。) また、28.1での等号成立条件を解答ではa=0またはb=0と書いていますが、私はab=0と書きましたがこれは問題ないですかね??

2 2階 基本例題 28 不等式の証明 [A'B'≧0の利用] 次の不等式が成り立つことを証明せよ。 また、等号が成り立つのはどのようなと to let lotul0-60 きか。 +3 +pe +8 (6) (1) a≧0,b≧0のとき 5√a +3√6≧√25a+96 (2) a≧0,b≧0のとき √a+√6≦√2(a+b) 指針▷ (1) の差の式は5√a+3√6-√25a+96 であり,これから≧0 は示しにくい。 そこで、証明すべき不等式において, (左辺) ≧0, (右辺) ≧0であることに着目し A≧0, B≧0のとき A≧BA≧B2 の利用を考える。 すなわち,まず (左辺)'≧(右辺) を証明するために, 平方の差 (左辺(右辺)2≧0を示 す。をはずして進める方法 【CHART 大小比較 差を作る 平方の差も利用 (0+dos+ D) 6+10/10087 解答 (1) (5√a+3√6)²−(√25a+9b (+)120=18 =(25a+30√a √b+96)-(25a+96) =30√a √6=30√ab ≥0 0≤(do-/do/)S= Scal- (OS 6 =a-2√ab+b 24854 よって {√2(a+b)}²≥(√a+√b)² √2(a+b)≧0,√a+√6≧0であるから よって (5√a +3√6)² ≥(√25a+9b)² 5 +3√60/25a+96 ≧0であるから利用で 5√a +3√b² √25a+9b 等号が成り立つのは, ① から a=0 または6=0 のときで √ab = 0 27202850 あるとみて、+1 (2) {√2(a+b)}²=(√a+√b)²=2(a+b)−(a+2√ab+b) Tal+lol l =(√√6)² ≥0 ...... Ⓒ p.48 基本事項 3 02(100)+on)s 平方の差。 A≧0, B≧0のとき A≧BA'≧B' 等号が成り立つのは,①からa=bのときである。 すなわち lab]=db から,abl ⇔A'-B'≧0 この確認を忘れずに。 平方の差。 (OTT) (S) 205/6+0/ (実数) 20 adin この確認を忘れずに。 29 √2(a+b)=√a+√6 ==?@@60-00+0,05/01-pl 51 1章 6 不等式の証明

未解決 回答数: 3