学年

教科

質問の種類

数学 高校生

英作文なんですけど、添削をお願いしたいです🙌🏻学校の先生にしてもらう時間がなくて明日テストなんです!お願いします🙇🏻‍♀️💭(字汚くてすいません)

次のTopic について、自分の意見とその理由を50 語程度の英文で書きなさい。 Topic :If you had an "Anywhere Door", where would you go? Topic 2: If you could travel in a time machine, when would you go to? Topic 3: Do you think more people will have pets in the future? 55 ☺ If I could travel in a time machine, I want to go to Heian Period. I have two reasons. First. I can watch Helankya. Sei Shenagon and Murasaki Shikibu. I like their essay. so I want to talk with them. For this reason. I want to go to Helan Period 54歳 0 If I had an Second. I want to meet "Anywhere Door", I want to go to Shizuoka. I have two reasons. First I want to eat Local gourment food like Fuzimiya-yakicabo, Second I want to watch the volley match of Hamamatushugakusha high school. But I haven't enough many to ge So I want to go to Shizuoka with anywhere door. ☺ I think more people will have pets in the future. It's because having And having pets make children's pets is good for education. emotions enriching. Also, pet helps relieve children's loneliness. So I think more people will have pete in the future Check! □自分の意見や考えを最初に述べているか。 □その理由を述べているか 理由に対する具体的な事例・事実を述べているか ( つなぎ言葉を効果的に使っているか。 □単語・文法の誤りはないか。 ) words

解決済み 回答数: 1
数学 高校生

〰︎︎部分が何故、こうなるのか教えて欲しいです‼️

ある。 等辺三角形 の3本の ~線 二等分 線 ●Cの中 分線の 4 5 75 8 心 と 練 △ABCにおいて, AB:AC=3:4 で AD は ∠Aの二等分線である。さらに,線分 AD を 5:3に内分す BA る点をE, 線分ED を 2:1に内分する点をF,線分 AC を 7:5に内分する点を G, 直線 BE と辺ACの 交点をHとする。 (1) AHHC (2) AE:EF=オ よって, BE: FG ケ (3) △ABCの面積が7のとき、 四角形 CDFGの面積は Key Key2 Key アイであるから AH: HG[ウ] より EH: FG キ:グ カ コである。 AH 5 HC よって (1) AD は ∠Aの二等分線であるから ▲ADCと直線BHについて、メネラウスの定理により, AH CB DE AH 7 3 1 であるから HC BD EA HC 3 50108021-54 よって すなわち よって よって BE: EH = AB:AH = BE=1/3 =5AC: AC= 5:2 12 したがって AH: HG = (2) AE:ED = 5:3, EF:FD=2:1 より よって, AH: HG = AE: EF が成り立つから ゆえに EH: FG = AH: AG = 5:7 よって EH AHHC=5:7 AH= AC 5 12 また, 点Gは線分 AC を 7:5に内分するから 5 ゆえに HG = AG-AH = 1/17 AC-17AC = 1/12 AC [スセ 9AM-5FC -EH: E BE:FG= AAFG = × BD:DC=AB:AC=3:4 したがって Key 3 (3) △ABCの面積が7のとき 7 △ADG= 8 7 7 49 8 12 24 したがって、 四角形 CDFG の面積Sは S = △ACD - △AFG = 4- 1/3E △ACD= FG = -EH ? 一方, △ABHにおいて, AEは∠Aの二等分線であるから 3 5 02/AC: 1/12A 7 8 x4= である。 である。 -EH= 9:7 8-1-S A8B3 7 12 -=100 であることがわかる。 -AC = 9:5 49 47 24 24 AG = AE: EF = 5:2 EH// FG -△ACD =08:8A-00:0A C 3²= AH¬HONE 04111 ホワ キャパをメオラウスを (②08>チチェバは全部必要だから× 7 ACN 12 28 DAA DA XTA 125 FX di B B E TO: 00-U AE: EF: FD = 5:2:1 0円コ H READ BE G D 1 and G D 長さの要素が 不要!!」 三角形だけ 44 AABC = 4 AABC: AACD = BC: DC 3751 A034 0₂3+0= 7:4 分かってれば OK!! C AADG: AAFG = AD: AF pe='ord = 8:7 U 100 AACD: AADG=AC: AG 1X0A HADA =12:7 攻略のカギ① Key 1 角の二等分線は、 対辺を隣辺の比に分けるとせよ △ABCの辺BC上の点Dについて, AD が ∠BACを2等分するとき BD:DC=AB:AC Key 2 三角形の比は, チェバ・メネラウスの定理を使え Key 3 高さの等しい三角形の面積比は, 底辺の長さの比を利用せよ 27 (p.94) BACOO

解決済み 回答数: 1