学年

教科

質問の種類

数学 高校生

指数関数に関しての質問です。考え方のところに任意の底で両辺の対数をとるとありますが、(1)では底5と底2で対数を取り、(2)では底10で対数をとっています。この任意の底が何なのか求める方法はありますか?

326 第5章 指数関数と対数関数 Think ***** 例題 163 対数の計算 (3) (1) α=5logz3+1 のとき, 40gza の値を求めよ.agolo ( 上智大) 1 1 1 (2) 2'3'5'30 のとき, + の値を求めよ of (成城大) 1 2 x y (log103+log1010) (2) 2'30 について, 底10で両辺の対数をとると log102=10g10/30 x log102= log(3-10). まずxの値を求める. dec mulo 2 対数と対数関数 327 x=- 5 (3) X=logis150,Y=2 logs/0/+1/2 3 3 8 +1/10g2g とする. log102 _log103+1 31ogi2 1 このとき, 10g23=a, log25=bとして, X, Y を a, b の式で表せ したがって 3log102 x log103+1 (名城大) 11 の逆数 同様に (2) 2'3/30について, 任意の底で両辺の対数をとって 任意の底で両辺の対数をとゑ 考え方 (1) の値はXとおいて、任意 別解では αlog MM を利用. (p.328 Column 参照) 3log105 log.30 log 2=log. 30-xlog.2=- 2=1/10g30 x= log.2 変形する. 解答 (1) 5logs3 X とおいて,底5で両辺の対数をとると, log55log 310g5 X -DE log2 3 logs5=logs X log2 3=10gsX log53 -=logsX logs25 /log:3=log:X まず5l0gs3 の値を求 める. loga M'=rlog.M logs5=1とな 底を5にそろえる。 |logs25=logs5°=2 (3) X = log15150 log2 150_log2(3・52・2) logz3+2log5+log: 2 5 y 1 よって, x y Z _310g 103+login10) log103+1 3(log103+1) log103+1 =3 log215 a+2b+1 log2(35) log23+log25 a+b y z も求めると 3log103 1 log103+1'z log103+1 1_1_3(login2+10g103+10g105) logo3+1 7h3J5 30 が共通なので、 分母が等しくなる. logio 2+logi05 |=log101 |log:3a, log25=b なので、底を2にそ 第5章 ろえる. logs3=logsX したがって,X=3=3 なので、 α=5log 3+1=√3 +1 log,O=log.A is pol+6.gol⇔O=△ 次に, 40ga=Yとおいて,底2で両辺の対数をとる 4logza を簡単にする。 と、 Dol+vol log24l0gzalog2Y log2a log24=log2Y 2log2a=log2Y 4585 000 log4=log,2 log2a2=log2Y よって,Y=α より, 4log:a=α²= (√3+1)^2=4+2/3 (別解) 10g3= log$3 1 log:25-2logs3=logs√3 =2 したがって, α=5logs√3+1=√3+1 go ww よって, m 4log:a22logza=2log = o² =√3+1)^2=4+2/3 wwwww 2logia=α² Focus Y=3³log2+ log2 3 88 28 (log23-10g22°)+20 (log25-10g2) =(a-3)+(6-3) =a+3b-3 logoc a この値は, alogic=Xとおき, 両辺の対数をとる 対数の定義 alog MM (a>0, a≠1,M> 0) 練習 1 3log25 [163] (1) この値を求めよ. /2 *** ( 青山学院大 ) (2) a,b,c を正の数とすると11+2a.b.c xyz (福岡大) (3)a=log3.blog5 とするとき 10g30 を a b を用いて表せまた, 21+0 および、底が2の対数を用いて表せ の値を求めよ. (大阪工業大) ➡p.34712

解決済み 回答数: 1
数学 高校生

どなたか答え合わせお願いします🙇‍♀️🙏💦

Ⅰ. 次の太字の英単語に最も近い意味を持つものを,a~d. の中から1つ選びなさい。 解答 は解答用紙1枚目 (マークシート方式) の所定の解答欄にマークしなさい。 (1) opportunity a. charge b. choice chance d. check (3) criterion a standard b. criticism c. agreement d. sequence (5) compensation a. money given or received as payment for a loss b. mathematical statement showing equal parts c. event where people celebrate d. advantage given to only certain people (7) registration a act of recording information b. idea that leads to further discussion c. strong like or appreciation for another d. one part of a larger component (9) distribute a. derive from an original source b. make available to see c. hand out or deliver something d. be different from others (2) reject a. make illegal refuse to accept c. express support d. give an order (4) application formal request a 6. changed behavior official record d. expression of ideas (6) intervention a. event which results in the police arriving b. having the freedom to make decisions c. distance from front to back d. act of coming between groups in a dispute (8) density a. affection for someone or something X. need for food C degree to which an area is filled or covered d. state of ownership (10) circumstance a. outcome of an event b. addition that makes something better c. feeling or action in response to something d. condition or fact that affects a situation

解決済み 回答数: 3
数学 高校生

おはよう御座います。 朝から数学ⅠAをやっています。 数学ⅠAの練習38が全然分からないです。 累乗とかP,Cなど色々使っているので、頭の中がごちゃごちゃして分かりにくいです。 早く解けるようにしたいです。 お願いします。

360 の札が4枚ずつあり、どの色の札にも1から4までの番号が 本 ( 38 確率の計算 (g) (2) 番号が全部異なる。 指針 場合の組数Nは、全12枚の札から3枚を選ぶ 組合せで通り (1)-(I)の各事象が起こる場合の数々は、次のようにして求める。 (1) (同じ色の選び方) (番号の取り出し方) (2) 異なる3つの番号の取り出し方)×(色の選び方) (3) 異なる3つの番号の取り出し方)×(3つの番号の色の選び方) 取り出した3つの番号を小さい順に並べ、それに対し、3色を順に対 応させると考えると、取り出した番号1組について、色の対応が [JP通りある。 12枚の札から3枚の札を取り出す方法は (1) 赤,青, 黄のどの色が同じになるかが その色について、どの番号を取り出すかが ゆえに、求める確率は CIX.C 3X4 12C% 12 C通り C通り 通り 12C 3 3 220 55 *** (2) どの3つの番号を取り出すかが Ca通り そのおのおのに対して、色の選び方は3通りずつあるから、 番号が全部異なる場合は C3×33 通り ゆえに、求める確率は 4C3×34×27 27 12 C3 220 55 (3) どの3つの番号を取り出すかが 通りあり, 取り出した 3つの番号の色の選び方が3P 3通りあるから、色も番号も全 部異なる場合は iCa X 3P3 通り ゆえに、求める確率は CaXzP34×6_6 220 55 札を選ぶ順序にも注 N-PCX, a-C₁XCX32A と、 a N 左の解答の式と一致する。 3つの番号それぞれに対し 3つずつ色が選べるから 3×3×3=7 赤、青、黄の3色に対し、 1,2,3, 4 から3つの数を 選んで対応させる、と考え て, 1%&P通りとしても 練習 1組のトランプの絵札 (ジャック, クイーン, キング) 合計 12枚の中から任意に4 38 枚の札を選ぶとき (1) スペード, ハート, ダイヤ, クラブの4種類の札が選ばれる確率を求めよ。 (2) ジャック, クイーン, キングの札が選ばれる確率を求めよ。 (3) スペード, ハート, ダイヤ, クラブの4種類の札が選ばれ、かつジャック, ク イーン, キングの札が選ばれる確率を求めよ。 [北海学園大]

解決済み 回答数: 1
数学 高校生

(3)について詳しく教えてください。お願いします。

(注) この科目には、 選択問題があります。 第1問 (必答問題) (配点30) [1] 関数 について考える。 (1) (4) f(x)=2sin 2x-√2 cos(x+4) TU 2-52.0 ア である。 である。 (2) 0≦xの範囲におけるf(x) の最大値を求めよう。 加法定理と2倍角の公式より cos(x+4)= di cas スン イ ウィ R ① sin2x= I2 sinx cos x 2.zaina cosa -√2. = (5x –je). である。よって, t = cosx-sinx とおくと、f(x)は4qincoil -ラージウス) f(x)=オカt-t+キ -55x+cosic √ris (1732) 元 7-91326. 504 4. cos —(cosx−sinx) となる。ここで,0≦x≦πであるから,①よりのとり得る値の範囲は 4 ク ケンsts ~21²²-² +2 レオ 2 である。したがって, 0≦x≦xの範囲におけるf(x) の最大値は サシ 2 (1^²) * オ -21²-11² (4-1) * ²-1-29141²5 +²= 1 = -25₁11054 (数学ⅡⅠ・数学B 第1問は次ページに続く。) (3)の範囲において, f(x)=1を満たすxの値は π t である。 ただし,αは 0<a< を満たす角である。 O α, N ⑩ の解答群 -4 -1-√7 4 π セ π かつ sina= 0-1/32 ② 42-47.. 1²-24² - 4+2 = 1 Gislut & x) = | 1 + ) {3^+^)~* 1=-1₁ 2054-931 (=-1₁& -1+√7 4 オンブル 21 -√2 R {[(x + 7 + 1 = みに ZnG erfarin. mze-ze, ze 1 ソ 1 6 4 1-√7 (3 第1回 1 3 1+√7 4 (数学ⅡI・数学B 第1問は次ページに続く。)

回答募集中 回答数: 0