学年

教科

質問の種類

数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
数学 高校生

極限の問題です。 ⑴が分かりません。なぜ範囲が「-π/4<θ/2^(k+1)<π/4」と言えるのでしょうか?

& 8 数列の極限 / 漸化式 x<0 とするとき, 次の条件によって定められる数列{an}がある. (n=1,2,3, ......) (3) n10 表せ. ak+1= 2"×sin a1 cos 0 an = COS が成り立つことを示せ. 2n が成り立つことを証明せよ. (3) bn=axax as ×・・ π 0 <. 4 2k+1 Cn+1=2"x2sin 2ntr =2" x sin lib=lim 0 2 an+1= 解答量 (1) 数学的帰納法で示す. n=1のとき成り立つ. n=kで成り立つとすると, 1/(1+(n)=1/(1+ T Cn=2"sin- 0 2n 半角の公式を連想する 本問は三角関数がらみである. そこで与えられた漸化式を三角関数の公式 と関連させて眺めよう. すると, cos 0 = 2 0 X cos X cos 2 0 2n 0 2n 1+an 2 22 0 0 Cm は一定で, C=C=2cos sin 2 2 1+cos であるから, cos ......Xan (n=1, 2, 3, ..... とおく.0=0のとき, limb を0を用いて n→∞0⁰ (新潟大・理,医,歯) 0 22 X cos -X cos 2 n-∞ sin (0/2") 0 X cos 0 2k 0 2k+1 = ->0 よって,n=k+1でも成り立つから,数学的帰納法により証明された. (2) 与式の左辺をcm とおくと, ədalə 0 (aimagenranspot.come on COS 2n+1 2n+1 2 X cos X cos =sin( 23 X...... X cos nail 1+cos 0 2 COS .. ayaz......an ... sin0=2"sin 0/2" sin sin 0 0 22 0 2n 2 0 2k+1 X cos = sin (n=1, 2, 3, ………….) 0 2n 0 2n ak+1=COS の公式を連想するのは難しくはないだろう. X・・・・・・ X cos Cn -bn 0 2k+1 0 2n 1 (1+cosa) = cos2mm 2 √ x2 = |X|に注意して√を外 す。 ← (2) も数学的帰納法で示すこと ができる. 0 2n+1 (2sinacosa=sin2a) ←2sin COS 0 2n 0 2n+1 Cn+1=2x5in274 =sin 0 2n "xsin ni xcus=xcus=-=+=+= 1 x ... x cos x cus int →0 (n→∞)

回答募集中 回答数: 0