学年

教科

質問の種類

数学 高校生

お願いします!

d= 75 la,b,cは定数とし,α > 0,b≧0 とする。 関数 f(0) = sin (a+b)+c に対して, y=f(0) のグ ラフについて考える。 (1) c=0 とする。 y=f(0) のグラフが図1の ようになったとする。このとき,a=ア であり, bとしてあり得る値の中で最小のもの はイである。 また、ここで求めた α と, d≧0 を満たす 実数 dを用いてf(0)=-sin(-al+d) と表 たとする。このとき, dとしてあり得る値の中で最小のものは, sin(0)=ウ すとき, y=f(8) のグラフが図1のようになっ 図1 a= ク ウ I π ⑩ ① 3 難易度 ★★★ である。 エ の解答群 の解答群 ラ の解答群 ケ の解答群 ⑩0 軸方向に ②0 サ の解答群 ⑩ cost 3 0 0 0 / r © « ・π π 2 ク 2 sin ① cost ② sin0 3 - cos (20)のグラフが図2のようになったとする。このとき, C = カ である。 0≦b <2π を満たすムとして 1個あり,その中で最小のものは あり得る値は キ である。 また,y=f(0) のグラフはy=cos オ 10 のグラフを サ したグラフと重なり,さらに, y=l コ なる。 ク だけ平行移動 y軸方向に ① cos 20 目標解答時間15分 COS カ π 3 7 1 2 ク OT 6 ケ のグラフと重 Fo 6 だけ平行移動 cos²0 SELECT SELECT 90 60 π カ ① y 軸方向に 4 cos2 20 53 VA 3 5 3 T W www. T 7 4 2π π であるから, 0 1 T 2図 図2 だけ平行移動 5 cos². 2 (配点 15) <公式・解法集 77 79 180

回答募集中 回答数: 0
数学 高校生

すみませんお願いします

d= a= 75 la,b,cは定数とし,α > 0,b≧0 とする。 関数 f(0) = sin (a+b) +c に対して, y=f(0) のグ ラフについて考える。 (1) c=0 とする。 y=f(8) のグラフが図1の ようになったとする。このとき, a = ア であり, bとしてあり得る値の中で最小のもの はイである。 また,ここで求めた α と, d≧0 を満たす 実数 dを用いてf(0)=-sin(-a0+d) と表 すとき、y=f(0) のグラフが図1のようになっ たとする。このとき, dとしてあり得る値の中で最小のものは, sin(0)=| 図1 ク 1 0 I 9 オ π , である。 エ ① C = 難易度 ★★) キ あり得る値は また,y=f(0) のグラフはy=cos[ したグラフと重なり,さらに,y=コ なる。 の解答群 の解答群 ② π 3 ケ の解答群 ⑩0 軸方向に 0 軸方向に サの解答群 ⑩ cose O ウ の解答群 ⑩ sine ① cost ② sino 3-cos (2) y=f(0)のグラフが図2のようになったとする。 このとき, カ である。 0≦b < 2 を満たすとして である。 1個あり,その中で最小のものは オ ケ のグラフと重 π ク ①1/② 2 ③ π π ク 5 67 だけ平行移動 y軸方向に , . 目標解答時間 15分 カ -3 7 1 2 -π ク OT 6 ・π 10 のグラフを 2 3 だけ平行移動 0 ① cos20 Ⓒcos - Ⓒcos ²0 COS ① y 軸方向に R 3 ⑤ π π 7-6 カ 6 SELECT SELECT 90 60 6 VA colent 53 TC 2π π www. W O T 2 図2 であるから, 0 H. t. 11 67 + π 0 だけ平行移動 0 2 ④ cos2 20 5 cos². 2 3 0 π (配点 1

回答募集中 回答数: 0
数学 高校生

なぜGはK1上にあると言えるんですか?

)を通る。 ただい ♪ 座標が である (配点 解法集 71 7² 1 68 カ 中心が点C(イコウ) ), 半径が 座標平面上に2点A(-7, -9), B (1, -1) がある。 2点A,B からの距離の比が3:1である点Pについて考える。点Pの軌跡をK」とする。 線分 AP, BP には長さについて、 アの関係が成り立つから, K, は オの円 である。 1については、当てはまるものを、次の①~⑤のうちから一つ選べ。 ア AP=2BP 11 2AP = BP AP = 3BP (4) AP = 4BP (5 4AP = BP ③ 3AP=BP 難易度 ★★★ 次に、三角形 ABP の面積が最大となる点Pについて考えよう。 な直線がK」 に接するときの接点である。 また, 点 3辺AB, AP, BP のうち,長さが一定であるものを底辺とすると,高さが最大であるとき,面積は 最大である。 このとき点Pは直線AB に カ Pは点 キ を通り, 直線AB に |な直線とK」 の交点とみることもできる。 よって、面積が最大となるのは、点Pが点D(ケコ] 一致するときである。 ク 1)または点E(シ], ク 目標解答時間 12分 垂直 キ の解答群 ⒸA ① B SELECT SELECT 90 60 カ については,当てはまるものを、次の各解答群のうちから一つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 ク |の解答群 平行 C セ さらに、三角形DEQの重心の軌跡が Ki から2点D, E を除いた部分であるとき, 点Qは 円K2: x2+y2- x タチツ=0 上にある。 と 400 (配点 15 ) 【公式・解法集 70 71 75 方程式 図形と

回答募集中 回答数: 0
数学 高校生

この解説を見せて頂けませんか? 出来れば明日までに知りたいです! 重要問題演習38P,60.61

38 箱の中に10本のくじが入っており、そのうち3本が当たりくじである。 このくじを10人が1本 つ順に引くとき,次の確率を考える。 ただし、引いたくじはもとに戻さないものとする。 RIPRE ① 3番目の人が当たりくじを引く確率 ②7番目の人が当たりくじを引く確率 ③ 3番目の人と7番目の人が当たりくじを引く確率 ア ナ (1) まず, ①について考える。 1番目 2番目 3番目にくじを引く人が当たりくじを引く事象をそれ ぞれA, B, C と表し, P(C) の値を求めよう。 P(A)= イウ P(A∩B∩C)= 難易度 ★★★ 引く条件付き確率はPA(B) = 引いたとき, 3番目の人も当たりくじを引く条件付き確率は PanB(C) = カ キ の解答群 である。 また,1番目の人が当たりくじを引いたとき, 2番目の人も当たりくじ 0 10 C3 コの解答群 9C₂ ア ウ 9P2 目標解答時間15分 × ① 10P3 エ オ である。 ①について, 左から3番目に当たりくじがある並べ方は 人が当たりくじを引く確率は ク ケコ I である。さらに、1番目と2番目の人がともに当たりくじを カ SELECT SELECT 90 60 ある。 しかし、同じやり方で②,③を考えることは難しい。 そこで、 別の試行に置き換えて考える。 10本のくじをk1,k2, ......, kio と表すことにし,k1,k2,ks が当たりくじであるとする。この ■本のくじを横一列に並べる試行を考える。この試行において, くじの並べ方の総数は サ 通 シ通りあるから3番目 である。他の場合も同様に考えると,P(C) = である。 ② 10P7 ③10! であるから, ②39P2 ③ 9P7 ④ 39P7 ⑤9! ク 3.9! で コ (3) 当たりくじを◯, はずれくじを●で表すことにし、3個の○と7個のを横一列に並べる試行を 考える。○と●の並べ方の総数は ス 通りである。 ①について、 左から3番目に○がある並べ t 通りあるから3番目の人が当たりくじを引く確率は 方は ス ⑩ 10C3 Ł の解答群 率は ① 10P3 ② 10P7 ③10! の解答群 9C2 ① 9P2 ②3.9P2 ③ 9P7 4 3.9P₁ ク ケコ (2) (3) のいずれかの考え方を用いると、 ②について, 7番目の人が当たりくじを引く確率 ツ と求 [ニヌネノ である。 ソ は ■タチ めることができる。 (4) これまでの箱とは異なる箱に100本のくじが入っており, そのうち10本が当たりくじである。 このくじを100人が1本ずつ順に引くとき, 3番目 7番目 100番目の3人が当たりくじを引く確 ⑤ 9! ⑥ 3.9! である。 であり、③について, 3番目の人と7番目の人が当たりくじを引く確率は ■テト (配点 15) 38 43 <公式・解法集 35

回答募集中 回答数: 0
数学 高校生

このページの問題が全体的に解き方が分かりませんよろしくお願いします。

75 a,b,cは定数とし, α > 0, 6 ≧0 とする。 関数 f(0) = sin (a+b)+c に対して, y=f(0) のグ ラフについて考える。 d= 1 (1) c = 0 とする。 y=f(0) のグラフが図1の ようになったとする。このとき,4= であり, bとしてあり得る値の中で最小のもの である。 また,ここで求めた。 と, d≧0 を満たす 実数 dを用いて f(0)=-sin(-α+d) と表 すとき, y=f(8) のグラフが図1のようになっ たとする。このとき, dとしてあり得る値の中で最小のものは, sin (-6)= 図 1 " a= あり得る値は である。 エ 9 難易度 ★★★ ①① ②/30 2 π の解答群 ク |の解答群 T の解答群 2 3 π ① 0 4 ケ の解答群 ⑩ 0 軸方向に ②0 軸方向に サ の解答群 ⑩ cost ① cos 20 2 cos ク ク ・π 9 ア ③ T だけ平行移動 y軸方向に sin ① cost ② - sine ③-cose (2) y=f(d)のグラフが図2のようになったとする。このとき, オ C= カ である。 0≦b <2π を満たするとして 個あり,その中で最小のものは である。 また, y=f(0) のグラフはy=cos [ オ 0 のグラフをケ したグラフと重なり,さらに,y=| コ サ のグラフと重 なる。 目標解答時間 π 11/0 4 7 120 ク OT 6 π π 15分 2/3 カ だけ平行移動 ⑨/⑥1/2⑥/①1/12 ① y 軸方向に COS20 R 76 カ SELECT SELECT 90 60 cos² 20 6 Lom S ウ π 2T W 4 であるから, ・π K2 図2 だけ平行移動 6 5 cos² -π TC (配点 15 ) 77 79 80 三角関数

回答募集中 回答数: 0