学年

教科

質問の種類

数学 高校生

青チャート数Bの統計の分野です。 P(k)までは合ってるっぽいんですけど、以降の計算でΣ[k=1,n-2]kP(k)を、P(n-1)とP(n)は0だと思ったのでΣ[k=1,n]kP(k)にして計算したら間違ってました。おそらく何か勘違いしてるので、どなたか説明してくれませんか。

(2) E(X)-kp-kn(n-1) n(n-1) (nk-k²) = n(n=1) {n • \/ \n (n+1)= | | (n+1)(2n+1)} 2 = n(n-1) = n(n+1)(3n-(2n+1)) n+1 6 3(n-1)(n-1)=n+1 3 また E(X)=R²-k²- 2(n-k) n(n-1) n(n-1) (nΣk²-k³) 2 72° また、に関係しない の式を 前に出す。 =(n+1) -n(n+1)(2n+1) =(-1) { //1n(n+1)(2n+1)-1/13r(n+1)} = 1/2(+1) n(n+1) 6 よって_V(X)=E(X*)-{E(X)n(n+1)_(n+1) (n+1)(n-2) 18 本 (nは3以上の整数) のくじの中に当たりくじとはずれくじがあり、そのうちの ② 66 2本がはずれくじである。このくじを1本ずつ引いていき、2本目のはずれくじを 引いたとき、それまでの当たりくじの本数をXとする。 Xの期待値E(X)と分散 V (X) を求めよ。 ただし, 引いたくじはもとに戻さないものとする。 [類 新潟大 p.519 EX 39.40 出るこ るときであるか [2]Zのとりうる よって、(1)から 二項定理により ゆえに、 Zn個の確率 副題の(2)は,次 knに対し X. 2 Xs........ EC 2以上の自 勝った人の数 (1) ちょうど (2)Xの期待 X-Omer P(x+c) = t h PD U ( n n y ) Ci me Pry=2)= (+ 1-2 A-3) 3 (+ P ht (n-2) -3 n-14 h (例2 (Pf) (=(n-2)/(h= h-1-k (h)! n(h+1) \^<2)! (^^-*) W (m-k)? (+) Ex)=l=k-1 2k+1) =h(n-1) ht 573072. pm. Proof={ \+) (2011) + {ach+i)} = +11 + (2n++ b + 4) h-1 2(n+1)(nt) == n-1. 3(h-1)

回答募集中 回答数: 0
数学 高校生

教えていただきたいです( . .)"

- 分散 である。 おくと, 92 難易度★ 90 60 目標解答時間 SELECT SELECT 15分 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 (1)ある学校で生徒会長選挙が行われた。 100人の生徒が投票し、そのうち36 人がAさんに投票した。 投票した100人のうち1人を選ぶとき,その人がAさんに投票していたら 1,投票していなければ 0の値をとる確率変数を Xとする。 ア Xの期待値は 標準偏差は エオ カキ である。 (2)2人の議員を選ぶ選挙が行われ,100万人の有権者が投票した。 この選挙ではより多い得票率 があれば確実に当選する。 開票率 1%, すなわち 10000人分が開票されたとき, Bさんに3600票 が入っていた。この開票された票を無作為に選ばれた標本とするとき, 標本比率は である。 これをBさんの得票率の母比率の推定値とする。 また, 母標準偏差もここから推定される であるとする。 エオ カキ ケ ここで、 10000 は大きいから,標本比率は近似的に正規分布 Np に従う。 コサシ に対する信頼度 99%の信頼区間は 得点の2 ク ケ ス セン × = 0.99 イウ コサシ ことがわ より, 小数第4位を四捨五入すると 0. タチツ Sp0 テトナ 点 10) 法集 107 である。 これより,p> 1/23 と推定できるので,Bさんは「当選確実」と判断できる。 (3)2人の議員を選ぶ選挙が行われ, 10万人の有権者が投票した。この選挙では 1/3 より多い得票率が あれば確実に当選する。 N人分が開票されて, 36% がCさんに投票していた。 Cさんの得票率の母 比率がに対する信頼度99%の信頼区間が(2) と同じ信頼区間で 「当選確実」 と判断することができ るとき, N= である。 二 | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ 100 500 1000 141 10000 (配点 10) (公式・解法集 109 統計的な

回答募集中 回答数: 0