学年

教科

質問の種類

数学 高校生

対数についての質問です。162の(2)です。青のマーカーを引いたa>b>1なら何故log a b>0 log b a>0となるのでしょうか?

6/15 2 対数と対数関数 325 例題 162 対数の計算 (2) **** (1)logio2a, logo3=b とするとき,次の値を a, b の式で表せ. (ア)10g105 (イ)10g316 (ウ)10g7524 2√7 (2)a>b>1,logab-loga=- 3 であるとき,logab + loga の 値を求めよ. 考え方 (1) 対数の性質や底の変換公式を使って, 与えられた式 を、底が10で, 真数が2か3か10の対数で表す. 10 (ア) 10g105=10g1010g1010-10g102=1-a <常用対数> log 10 N 底が10 解答 (1) 10 5= 2 (イ) 10g316= E.col (ウ)10g7524= log103 logo24_logio (233) log103 b 底を10にそろえる. log1075 10g10 (3.52) logo16_logi02_410gio2_4a log103 _log1023 +10g103_310g102+10g103 10g 103+10g1052 10g103+210gi05 3a+b 3a+b b+2(1-a) 2-2a+b (2) a>b>1 であるから, logab>0 10ga>0より 10gab+log.a>0 (logab+loga) 2 =(logab-logia)²+4logab loga ......① (ア)より, 10g105=1-a 第5章 Xagol= ao (x+y)²=(x-y)"+4xy logaa 1 ここで, loga= であるから, ①に代入すると, logablogab (logab+1oga) = (logab-loga)+410gab. logab =(-267)+4=64 8 よって, 10gab +10ga>0より, logab+10ga=- 3 Focus 条件式の底が10であるから,底の変換公式により底を10にする 注》例題 162 (1)ア)では、10g105の5を2,3, 10 で表すことを考えるのだが、このようなとき は、5=- 5=120 のように積か商で表すように工夫しよう 52+3 としても, logio (2+3) これ以上,変形することはできない. Rigol 練習 (1) 10g102=a,log103=6 とするとき,次の値を a, b の式で表せ. |162| *** (ア)10g34 (イ)10g1215 1 (ウ)10g105.4+210g10 1.5 (2)2つの正の数x, yが以下の2条件を満たすとき (10gzx) + (10gzy) の値 を求めよ. 1 (1)(10g)(103)=8 p.347 12

解決済み 回答数: 1
数学 高校生

指数関数に関しての質問です。考え方のところに任意の底で両辺の対数をとるとありますが、(1)では底5と底2で対数を取り、(2)では底10で対数をとっています。この任意の底が何なのか求める方法はありますか?

326 第5章 指数関数と対数関数 Think ***** 例題 163 対数の計算 (3) (1) α=5logz3+1 のとき, 40gza の値を求めよ.agolo ( 上智大) 1 1 1 (2) 2'3'5'30 のとき, + の値を求めよ of (成城大) 1 2 x y (log103+log1010) (2) 2'30 について, 底10で両辺の対数をとると log102=10g10/30 x log102= log(3-10). まずxの値を求める. dec mulo 2 対数と対数関数 327 x=- 5 (3) X=logis150,Y=2 logs/0/+1/2 3 3 8 +1/10g2g とする. log102 _log103+1 31ogi2 1 このとき, 10g23=a, log25=bとして, X, Y を a, b の式で表せ したがって 3log102 x log103+1 (名城大) 11 の逆数 同様に (2) 2'3/30について, 任意の底で両辺の対数をとって 任意の底で両辺の対数をとゑ 考え方 (1) の値はXとおいて、任意 別解では αlog MM を利用. (p.328 Column 参照) 3log105 log.30 log 2=log. 30-xlog.2=- 2=1/10g30 x= log.2 変形する. 解答 (1) 5logs3 X とおいて,底5で両辺の対数をとると, log55log 310g5 X -DE log2 3 logs5=logs X log2 3=10gsX log53 -=logsX logs25 /log:3=log:X まず5l0gs3 の値を求 める. loga M'=rlog.M logs5=1とな 底を5にそろえる。 |logs25=logs5°=2 (3) X = log15150 log2 150_log2(3・52・2) logz3+2log5+log: 2 5 y 1 よって, x y Z _310g 103+login10) log103+1 3(log103+1) log103+1 =3 log215 a+2b+1 log2(35) log23+log25 a+b y z も求めると 3log103 1 log103+1'z log103+1 1_1_3(login2+10g103+10g105) logo3+1 7h3J5 30 が共通なので、 分母が等しくなる. logio 2+logi05 |=log101 |log:3a, log25=b なので、底を2にそ 第5章 ろえる. logs3=logsX したがって,X=3=3 なので、 α=5log 3+1=√3 +1 log,O=log.A is pol+6.gol⇔O=△ 次に, 40ga=Yとおいて,底2で両辺の対数をとる 4logza を簡単にする。 と、 Dol+vol log24l0gzalog2Y log2a log24=log2Y 2log2a=log2Y 4585 000 log4=log,2 log2a2=log2Y よって,Y=α より, 4log:a=α²= (√3+1)^2=4+2/3 (別解) 10g3= log$3 1 log:25-2logs3=logs√3 =2 したがって, α=5logs√3+1=√3+1 go ww よって, m 4log:a22logza=2log = o² =√3+1)^2=4+2/3 wwwww 2logia=α² Focus Y=3³log2+ log2 3 88 28 (log23-10g22°)+20 (log25-10g2) =(a-3)+(6-3) =a+3b-3 logoc a この値は, alogic=Xとおき, 両辺の対数をとる 対数の定義 alog MM (a>0, a≠1,M> 0) 練習 1 3log25 [163] (1) この値を求めよ. /2 *** ( 青山学院大 ) (2) a,b,c を正の数とすると11+2a.b.c xyz (福岡大) (3)a=log3.blog5 とするとき 10g30 を a b を用いて表せまた, 21+0 および、底が2の対数を用いて表せ の値を求めよ. (大阪工業大) ➡p.34712

解決済み 回答数: 1