学年

教科

質問の種類

数学 高校生

数学3についてです 解説を見てもよくわかりません この問題を見てどう考えたらこの解説のような解法を思いつくのでしょうか わかる方おねがいします

基本 例題 90 平均値の定理を利用した不等式の証明 平均値の定理を用いて,次のことを証明せよ。 e² 1/2 <a<b<1のときa-b<blogb-aloga<b-a ・基本 89 重要 91 平均値の定理の式は 指針 f(b)-f(a) b-a -=f'(c) (a<c<b) ① 一方, 証明すべき不等式の各辺を6-α (>0) で割ると blogb-aloga -1- <1 b-a ① ② を比較すると, f(x)=xlogx (a≦x≦b)において, -1<f(c) <1 を示せばよい ことがわかる。このように,差f(b)-f(a)を含む不等式の証明には,平均値の 定理を活用するとよい。 ★ CHART 差f (b)-f(α) を含む不等式 平均値の定理も有効 関数f(x)=xlog x は, x>0で微分可能で x>0で微分可能である 解答 f'(x) =logx+1 から,x>0で連続。 よって, 区間[α, b] において,平均値の定理を用いると blogb-aloga b-a 指針 ★の方針。 =logc+1, a<c<b を満たすc が存在する。 ・<a<b<1とa<c <bから 1/1/2 <<1 e2 各辺の自然対数をとって log <logc<log 1 e2 1 すなわち −2<logc<0 log この不等式の各辺に1を加えて f(b)-f(a) を含む不 等式については,平均値 の定理を意識しよう。 なお, 2変数の不等式の 扱いについて, p.200 で まとめている。 11/2=loge^2=-2. log1=0 −1<logc+1<1 blogb-alog@<1 よって -1< b-a この不等式の各辺に bα (0) を掛けて a-b<blogb-aloga<b-a <a<bであるから ba>0

解決済み 回答数: 1
数学 高校生

青線引いた部分についてです!ここでなぜ絶対値をとる必要があるんですか?回答よろしくお願いします!

一末問題 にして, bc となり、 ab bc b-a -loga + a c-b 21, √ab+√bc +√ca=1 ca blogs√be ac c-b log c -log+a-c syab+√bc+vcaD ここで、a++√c=1 の両辺を2乗すると, a+b+c+2,/ab+2、bc +2√ca =1 vca > 0 ) (x 第4 .d <rg^(x)=f(x)-1≦1-1<0 0-7(x) ca a log C であるから,g(x)は単調減少な関数である。 ここで,g(0),g(1) を考えると |g(0)=f(0)-0 1 1+e=20 == 1 |g(1)=f(1)-1= 1-(a+b+c) 15. J 1+e e+1-1=<0 したがって,g(x)=0 は 0<x<1にただ1つの解を e e+1 もつ。 2 八 また、√a++√c=1のとき、(2)より,0x よって、f(x)=xはただ1つの実数解をもつ (3)(2)において yA y=x/ loga f(x)=x を満たす a+b+c...... laga Co 01 1=x+p+00 ただ1つの解をβと おくと, 0<β<1で あり y=f(x) 2)(am, f(an)) f(x)は 0 1- f(B)=BD an an+1 8 1 x 3 1 ②.③より√ab+√bc+√cas 2 a+b+czy, よって、 ① より, b-a a c-b ab logb+ be log+c logs bc C ca +p+ (1-(a+b+c) ≤1-1 33 b a-c 4 関数f(x)=- について、次の問いに答えよ.hpps-fe また、条件より f(am)=an+1 ......② ①②の辺々の差の絶対値をとると f(am)-f(B)1=lan+183 ここで, an≠β のとき, f(x) に平均値の定理を用い ると, したがっf(am)-f(β) -=f'(c) ••••••④ うになる an-β (021) を満たすc が a と β の間に存在する. ④を変形して, Tx+ 1 1+e (1) 導関数f'(x) の最大値を求めよ. (2) 方程式 f(x)=x はただ1つの実数解をもつことを示せ.)+(-6) (3) 漸化式 an+1=f(a.) (n=1, 2, 3, ...) で与えられる数列{an} は,初項 α の値によら ず収束し, その極限値は(2)の方程式の解になることを示せ. (1) f'(x)=1+e^*) (1+e_x)1+2+e_25 1 1 *+2+* e*+. ++2 e₁ (23) \f(am)-f(β)\=lf'(c)lla-Bl ③を用いると, an+1-Bl=\f'(c)lla-β.......⑤ つまり, ⑤を満たすcが, am とβの間に存在する. (1)より.0<f(x)=1であるので、 >20) 商の微分 分母、分子にe を掛ける。 ①lam+1-Bl=\f'(c)|lam-B グラフ ya a-B ......⑥ よって、グラフ が成り立つ 2 ここで0.12.20 であるから,相加平均・相乗平 均の関係より, 等号成立は,e= 1 e+ +2≥4 また,am=βのときも, ⑥は成り立つ. ⑥をくり返し用いると, したがって f'(x)=- 1 ex+- ex+2 よって、f'(x)の最大値は,1/1 (2)g(x)=f(x)-xとおくと, すなわち, x=0 のとき 両辺ともに正より逆数をと an+1 0<-x) る. したがって, 201 do an-1- a- 0.0<00< -1 lim (1) la.-B1=0 であるから,⑦とはさみ であり, lim うちの原理より,

解決済み 回答数: 1
数学 高校生

対数についての質問です。162の(2)です。青のマーカーを引いたa>b>1なら何故log a b>0 log b a>0となるのでしょうか?

6/15 2 対数と対数関数 325 例題 162 対数の計算 (2) **** (1)logio2a, logo3=b とするとき,次の値を a, b の式で表せ. (ア)10g105 (イ)10g316 (ウ)10g7524 2√7 (2)a>b>1,logab-loga=- 3 であるとき,logab + loga の 値を求めよ. 考え方 (1) 対数の性質や底の変換公式を使って, 与えられた式 を、底が10で, 真数が2か3か10の対数で表す. 10 (ア) 10g105=10g1010g1010-10g102=1-a <常用対数> log 10 N 底が10 解答 (1) 10 5= 2 (イ) 10g316= E.col (ウ)10g7524= log103 logo24_logio (233) log103 b 底を10にそろえる. log1075 10g10 (3.52) logo16_logi02_410gio2_4a log103 _log1023 +10g103_310g102+10g103 10g 103+10g1052 10g103+210gi05 3a+b 3a+b b+2(1-a) 2-2a+b (2) a>b>1 であるから, logab>0 10ga>0より 10gab+log.a>0 (logab+loga) 2 =(logab-logia)²+4logab loga ......① (ア)より, 10g105=1-a 第5章 Xagol= ao (x+y)²=(x-y)"+4xy logaa 1 ここで, loga= であるから, ①に代入すると, logablogab (logab+1oga) = (logab-loga)+410gab. logab =(-267)+4=64 8 よって, 10gab +10ga>0より, logab+10ga=- 3 Focus 条件式の底が10であるから,底の変換公式により底を10にする 注》例題 162 (1)ア)では、10g105の5を2,3, 10 で表すことを考えるのだが、このようなとき は、5=- 5=120 のように積か商で表すように工夫しよう 52+3 としても, logio (2+3) これ以上,変形することはできない. Rigol 練習 (1) 10g102=a,log103=6 とするとき,次の値を a, b の式で表せ. |162| *** (ア)10g34 (イ)10g1215 1 (ウ)10g105.4+210g10 1.5 (2)2つの正の数x, yが以下の2条件を満たすとき (10gzx) + (10gzy) の値 を求めよ. 1 (1)(10g)(103)=8 p.347 12

解決済み 回答数: 1
数学 高校生

指数関数に関しての質問です。考え方のところに任意の底で両辺の対数をとるとありますが、(1)では底5と底2で対数を取り、(2)では底10で対数をとっています。この任意の底が何なのか求める方法はありますか?

326 第5章 指数関数と対数関数 Think ***** 例題 163 対数の計算 (3) (1) α=5logz3+1 のとき, 40gza の値を求めよ.agolo ( 上智大) 1 1 1 (2) 2'3'5'30 のとき, + の値を求めよ of (成城大) 1 2 x y (log103+log1010) (2) 2'30 について, 底10で両辺の対数をとると log102=10g10/30 x log102= log(3-10). まずxの値を求める. dec mulo 2 対数と対数関数 327 x=- 5 (3) X=logis150,Y=2 logs/0/+1/2 3 3 8 +1/10g2g とする. log102 _log103+1 31ogi2 1 このとき, 10g23=a, log25=bとして, X, Y を a, b の式で表せ したがって 3log102 x log103+1 (名城大) 11 の逆数 同様に (2) 2'3/30について, 任意の底で両辺の対数をとって 任意の底で両辺の対数をとゑ 考え方 (1) の値はXとおいて、任意 別解では αlog MM を利用. (p.328 Column 参照) 3log105 log.30 log 2=log. 30-xlog.2=- 2=1/10g30 x= log.2 変形する. 解答 (1) 5logs3 X とおいて,底5で両辺の対数をとると, log55log 310g5 X -DE log2 3 logs5=logs X log2 3=10gsX log53 -=logsX logs25 /log:3=log:X まず5l0gs3 の値を求 める. loga M'=rlog.M logs5=1とな 底を5にそろえる。 |logs25=logs5°=2 (3) X = log15150 log2 150_log2(3・52・2) logz3+2log5+log: 2 5 y 1 よって, x y Z _310g 103+login10) log103+1 3(log103+1) log103+1 =3 log215 a+2b+1 log2(35) log23+log25 a+b y z も求めると 3log103 1 log103+1'z log103+1 1_1_3(login2+10g103+10g105) logo3+1 7h3J5 30 が共通なので、 分母が等しくなる. logio 2+logi05 |=log101 |log:3a, log25=b なので、底を2にそ 第5章 ろえる. logs3=logsX したがって,X=3=3 なので、 α=5log 3+1=√3 +1 log,O=log.A is pol+6.gol⇔O=△ 次に, 40ga=Yとおいて,底2で両辺の対数をとる 4logza を簡単にする。 と、 Dol+vol log24l0gzalog2Y log2a log24=log2Y 2log2a=log2Y 4585 000 log4=log,2 log2a2=log2Y よって,Y=α より, 4log:a=α²= (√3+1)^2=4+2/3 (別解) 10g3= log$3 1 log:25-2logs3=logs√3 =2 したがって, α=5logs√3+1=√3+1 go ww よって, m 4log:a22logza=2log = o² =√3+1)^2=4+2/3 wwwww 2logia=α² Focus Y=3³log2+ log2 3 88 28 (log23-10g22°)+20 (log25-10g2) =(a-3)+(6-3) =a+3b-3 logoc a この値は, alogic=Xとおき, 両辺の対数をとる 対数の定義 alog MM (a>0, a≠1,M> 0) 練習 1 3log25 [163] (1) この値を求めよ. /2 *** ( 青山学院大 ) (2) a,b,c を正の数とすると11+2a.b.c xyz (福岡大) (3)a=log3.blog5 とするとき 10g30 を a b を用いて表せまた, 21+0 および、底が2の対数を用いて表せ の値を求めよ. (大阪工業大) ➡p.34712

解決済み 回答数: 1