学年

教科

質問の種類

数学 高校生

infomationの2行目の式がなぜ2直線の交点を通る直線を表していると言えるのですか?

らず 基本18 ...... 基本 例題 78 2直線の交点を通る直線 2直線 2x+3y=7 直線の方程式を求めよ。 ・①, 4x+11y=19 123 000 ② の交点と点 (54) を通 Ip.115 基本事項 5. 基本 77 ―係数比較送) 一数値代入法 線の式が成立 よう。 CHART SOLUTION 2直線 f(x,y)=0,g(x,y)=0 の交点を通る直線 方程式 kf(x,y)+g(x,y)=0 (kは定数)を考える x, yで表される式を f(x, y) などと表す。 問題の条件は2つある。 [1] 2直線 ①,②の交点を通る [2] 点 (54) を通る そこで,まず,①,②の交点を通る直線(条件[1]) を考え,次に,この直線が点 (54) を通る (条件 [2]) ようにする。 3章 直線 比較法 -g=0がんの ⇒f=0,g=1 この基本例題 るように --4y=0, 1=0 の交点を すから、これ 三点が定点A =入法 当な値を代入 係数を0にす してもよい。 件の確認。 うらず 解答 kを定数とするとき, 次の方程式 ③は,2直線 ①,②の交点を通 る直線を表す。 (2x+3y-7)+(4x+11y-19) =0 ...... ③ ③が,点 (54) を通るとすると, ③に x=5,y=4 を代入して 15k+45= 0 よって (1) 11 19 11 0 73 k=-3 |-7|2 (2,1) 別解 2直線 ①,② の交点 の座標は (5, 4) よって, 2点 (21), (54) を通る直線の方程式は 19-1=4-12(x-2) 4 すなわち x-y-1=0 これを③ に代入すると-3(2x+3y-7)+(4x+11y-19)=0 整理すると x-y-1=0 INFORMATION 2直線の交点を通る直線 交わる2直線 ax+by+c=0,ax+by+c2=0に対して kax+by+c)+azx+bzy+c2=0 (kは定数)..... (*) は,kの値にかかわらず2直線の交点を通る直線を表している。 (ただし,直線 ax+by+c=0 は除く。) 2直線の交点(x,y) は,ax+by+c=0, azx+by+c2=0 を同時に満たす点であ るから,(*)はんの値にかかわらず成り立つ。 すなわち, (*)は2直線の交点を必ず 通る直線になる。 この考え方は直線以外の図形を表す場合にも通用するので,応用範囲が広い。 PRACTICE... 78 ③ 次の直線の方程式を求めよ。 (1) 2直線x+y-4=0, 2x-y+1=0 の交点と点 (-2, 1) を通る直線 (2) 2直線 x-2y+2=0, x+2y-3=0 の交点を通り,直線 5x+4y+7=0 に垂直 な直線

回答募集中 回答数: 0
数学 高校生

informationの3行目、なぜこの式が二直線の交点を通る直線を表しているんですか?

らず 2直線 2x+3y=7 基本 例題 8 2直線の交点を通る直線 ...... ①, 4x+11y=19 直線の方程式を求めよ。 CHART O SOLUTION 七較送 入注 成立 ●の 9=1 題 78 点 これ A です 「解答」 00000 ② の交点と点 (54) を通 p.115 基本事項 5. 基本 77 123 2直線 f (x,y)=0,g(x,y)=0 の交点を通る直線 方程式kf(x,y)+g(x,y)=0 (kは定数) を考える・・・・・ x,yで表される式をf(x, y) などと表す。 問題の条件は2つある。 [1] 2直線 ①,②の交点を通る [2] 点 (54) を通る そこで,まず, ①,②の交点を通る直線(条件[1]) を考え、次に,この直線が点 (54) を通る (条件 [2]) ようにする。 kを定数とするとき,次の方程式 ③は,2直線 ①,②の交点を通 る直線を表す。 k(2x+3y-7)+(4x+11y-19) =0 ③が,点 (54) を通るとすると, ③に x=5,y=4 を代入して 15k+45=0 ② 19 11 10 73/ よって k=-3 7|2 3章 別解 2直線①,② の交点 11 の座標は (2,1) (5,4) よって, 2点 (2,1) (54) > を通る直線の方程式は 19-1=4-12(x-2) 4 これを③に代入すると-3(2x+3y-7)+(4x+11y-19)=0 整理すると x-y-1=0 INFORMATION 2直線の交点を通る直線 交わる2直線 αx+by+c=0,ax+by+c2=0 に対して すなわち x-y-1=0 k(ax+by+ci)+azx+bzy+c2=0(kは定数) .... (*) は,kの値にかかわらず2直線の交点を通る直線を表している。 (ただし,直線 ax+by+c=0 は除く。) 2直線の交点(x,y) は,ax+by+c=0, ax+by+C2=0 を同時に満たす点であ るから,(*) はんの値にかかわらず成り立つ。 すなわち, (*)は2直線の交点を必ず 通る直線になる。 この考え方は直線以外の図形を表す場合にも通用するので,応用範囲が広い。 直線

回答募集中 回答数: 0
数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0
数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0