学年

教科

質問の種類

数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

数一数と式 nがどこから出てきたのかわからないです。 後、エ、ケ、コサシ、ス、セがわからないです。 分かる方お願いします。

実践問題 太郎さんと花子さんのクラスでは、数学の授業で先生から次のような宿題が出された。 (1) 0026870 201 宿題 実数x に対して, A = (x + 1)(x + 2)(5 − x)(6 − x) B = Ax(4-x) : とおく。 きくとチェ AT OR <A> #¹3564 (a) x=2+√2 のときのBの値を求めよ。 (b) A=120となるようなxの値はいくつあるか。 ANTENJE) HERO 太郎さんと花子さんは,二つの整式 A,Bを整理していくことについて話している。 太郎 この整式Bについて, Aを用いずに表すと B = x(x+1)(x+2)(4-x) (5-x) (6-x) となるね。 花子:xの式が6個かけ算されているのね。このうちの2つずつを組合せて少し整理でき ないかな。 例えば, X = x(4-x) とおいてみるとか。 太郎 : 確かにそのようにおくと, 整数nに対して, (x+n)(n+4−x) = X +n² + ア となるから, 例えば,n=1のときは, (x-1)(イ-x)=x-ウ エ になるね。 花子:そうね。これで二つの整式A, BがXを使ってもう少し整理された形になるね。 下線部について,整式B を X で表すとエ の解答群 12 | 数学 Ⅰ X(X + 1)(X + 2) X(X + 5)(X + 12) 4 (X + 1)(X + 4)(X + 9) n となる。 X(X + 1)(X + 4) (X + 1)(X + 2)(X + 3) (X + 1)(X + 5)(X + 12) (2) 花子 : x = 2+ X だから B だとわ 太郎 : (b)に一 だね A= A = 12 t 0 1 ④2

回答募集中 回答数: 0
数学 高校生

62.1 方程式の解の1つをwとしているので x^2+x+1=0をw^2+w+1=0としてしまうと 二次方程式の2つの解がwで表せるようになってしまうので条件 と合わなくないですか??

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40 +7 とする。 の1次式 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をωの1 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した、次の方針に従って進める 高次式の値 条件式を用いて次数を下げる 割り算の問題等式 A =BQ+R の利用。 B = 0 を考える ω'+ω+1=0 (1) は x2+x+1=0の解であるから これを用いてまずの値を求め、その値を利用してf(ω) の式の次数を下げる。 (2) 求める余りはαx+b と表されf(x) = (x2+x+1)Q(x)+ax+b これにx=ω を代入すると f(w)=aw+b Q(x) は商 解答 (1) は x²+x+1=0の解であるから よって w²=-w-1, w²+w=-1 w²+w+1=0 また, 80=3・26+2, 40313+1 であるから (*) w³-1 3a+s=(w-1)(w²+w+1)=0 eee²=(a-1)=-(ω^+c)=(-1)=1) から1としてもよい。 は1の虚数の3乗根であ る。 f(w)=w8⁰-3w40 +7=(w³) ²6 w²-3(w³) ¹³.w+7 =126.(-ω-1)-3・13・ω+7=-4ω+6 (2) f(x) を x2+x+1で割ったときの商をQ(x), 余りをax+b (a,bは実数) とすると 練習 f(x)=(x2+x+1)Q(x)+ax+b ω'+ω+1=0であるから (1) から -4w+6=aw+b α, b は実数は虚数であるから a=-4, b=6 したがって 求める余りは -4x+6 f(w)=aw+b が成り立つ。 次数を下げて1次式に。 [参考] a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz ⇔a=c かつ b=d [証明] [①の証明] (←) 明らかに成り立つ。 (⇒) b=0 と仮定するとz=- :=-1 このとき a=0 b=0 よって ② の証明は、(a-c)+(b-dz=0 として上と同様に考えればよい。 なお、上の①②は、p.62の①②を一般の場合に拡張したものにあたる。 2018をx²+x+1 で割ったときの余りを求めよ。 → (2) A=BQ+R 割る式B=0 を活用。 下の参考② を利用。 S 左辺は虚数,右辺は実数となるから矛盾。 基 3次 定業 指針 解 -18 (-1) すな これ よっ 左辺 した 別解 fC (x 右 こ し xC * E C

回答募集中 回答数: 0
数学 高校生

解答と取る範囲が違うのですが間違ってますか?

130 00000 基本例題 79 2次関数の最大・最小 (4) aは定数とする。 0≦x≦4における関数f(x)=x2-2ax+3aについて,次のもの を求めよ。 (1) 最大値 指針 関数のグラフ (下に凸の放物線) の軸は直線x=α であるが, a のとる値によって、軸の 置が変わる。 よって, 軸x=α と区間 0≦x≦4の位置関係で,次のように場合を分ける。 (1) 最大 (区間の端) (2) 最小(頂点または区間の端)→軸が区間の左外,内,右外 解答 関数の式を変形すると f(x)=(x-a)^-a²+3a y=f(x)のグラフは下に凸の放物線で, 軸は直線x=a したがって (2) 最小値 したがって 練習 79 (1) 区間 0≦x≦4の中央の値は2である。 [[1] a<2のとき,図 [1] から, x=4で最大値f(4)=16-5αをとる。 [2] a=2のとき, 図 [2] から, x=0, 4で最大値f(0)=f (4) = 6 をとる。 [3] a>2のとき, 図 [3] から, x=0で最大値f(0)=3 をとる。 [1] [3] [2]\ |最小 x=ax= 0x=4 →軸が区間の中央より左,中央,中央より右 い、最大 軸 !!最大 基本 77 最大 x=0x=ax=4 x=0x=2x=4 a<2のとき x=4で最大値16-5a a=2のとき x=0, 4で最大値6 a>2のとき x=0で最大値3a (2) 軸x=α 0≦x≦4の範囲に含まれるかどうかを考える。 [ [4] a <0のとき, 図 [4] から, x=0で最小値f(0)=3a をとる。 [5] 0≦a≦4のとき,図 [5] から,x=αで最小値f(a)=a+3a をとる。 [6] a>4のとき,図 [6] から, x=4で最小値f(4)=16-5αをとる。 [4] 軸] [5] # [6] |軸 最小 x=0 x=ax=4 |x=2|| x=0x=ax=4 最小 基本114 まず,基本形に直す。 a<0のとき x=0で最小値3a 0≦a≦4のとき x=αで最小値-α+3a a>4のとき x=4で最小値16-5a x=0 x=4x=a 30TH aは定数とし,関数y=x2+2(a-1)x (1≦x≦1) について次のものを求めよ。 (1) 最大値 (2) 最小値 〔類 センター試 ズーム 2次 UP ここでは, 場合分け 軸の位置で f(x)=(x-a) 軸は直線x=α の図のように、エ 変わると、軸( き, 区間0≦x≦ 小となる場所が よって, 軸の位 最大値を求 y=f(x)のグラ 大きい (右図を したがって, 軸 イントになる。 等しくなるよう [1] 軸が区間 [軸] x=0x=q x=4の方か 最小値を求 y=f(x)のグラ なる。ゆえに, ときは区間の方 [4] 軸が 軸 区間 x=ax=0

回答募集中 回答数: 0