学年

教科

質問の種類

数学 高校生

1と2でcが異なるのがよくわかりません。 どうやって考えればいいんですか?

○○ 基本 71 日本例題 を求めよ。 の共有点と連立1次方程式の解 立方程式 ax+3y-1=0, 3x-2y+c=0 が,次のようになるための条件 ただ1組の解をもつ 00000 (2) 解をもたない (3) 無数の解をもつ p.121 基本事項 GHART & SOLUTION 2直線が 川 1点で交わる 2直線A, B の共有点の座標 ⇔ (共有点は1つ) 連立方程式が 連立方程式 A, B の解 125 が一致 よい。 [2] 平行で一致しない (共有点はない) ⇔ ⇔ [3] 一致する(共有点は直線上の点全体) 答 ax+3y-1=0 から 3x-2y+c=0 から y=-- a 1 x+ 3 3 y=1/2x+1/2 1組の解をもつ 解をもたない 無数の解をもつ (1) 連立方程式 ① ② がただ1組の解をもつための条件は, 2直線 ①② が1点で交わる, すなわち平行でないことで a 3 が -1 ある。 0 よって 3 2 9 ゆえに a- 2 cは任意の実数 (2)連立方程式 ①,②が解をもたないための条件は, 2直線 ① ②が平行で一致しないことである。 inf 2直線 ax+by+c=0, azx+bzy+cz=0 が | 平行であるための条件は ab-ab=0 3章 11 である(p.120基本事項3) から (1) は b2-azb≠0 より求めてもよい。 なお, a2=0,620, 20 のとき 2直線が 一致するための条件は a_bicy a2 b₂ C2 直線 である。 (3)は、この式から 求めてもよい。 0 よって a = 3 1 C ・キ 3 2'3 2 9 ゆえに a= 2 3

回答募集中 回答数: 0
数学 高校生

どうしてa-1を消去するとダメなのでしょうか?

Think 例題 55 文字係数の方程式 a を定数とするとき, 次の方程式を解け. (1) ax²-(a+1)x+1=0 考え方 文字係数を含む方程式を解く問題. 平 **** (2) (a2-1)x2=a-1 p.68 の例題 29 文字係数の不等式と同様に考える. つまり, 見かけ上の最高次の項の 係数が0の場合とそうでない場合を分けて考える。 たとえば, (1) では, x2 の係数 αに着目すると, a=0 のとき, -x+1=0 となり, 1次方程式となる. a≠0 のとき, ax²-(a+1)x+1=0 の2次方程式を考える. 解答 (1) (i) a=0 のとき x2の係数が0のとき, もとの方程式は, -x+1=0 より x=1 x2の項がなくなるの (ii) α = 0 のとき ax2+(-a-1)x+1=0 で,xの1次方程式に なる. (x-1)(ax-1)=0 より 1 x=1, -1→ - a a a -1→ -1 よって, a=0 のとき, x=1 -a-1 a=0 のとき, x=1, a (2) (a-1)(a+1)x2=a-la-lを消しちゃダメ! (i) a=1 のとき もとの方程式は, 0⚫x2=0 このとき,xはすべての実数 (ii) α=-1のとき もとの方程式は, 0.x2=2 これを満たすxは存在しないので,解なし () αキ±1 のとき a2-10 から, 両辺を2-1で割って x²= 1 a+1 a=1のとき, xがど のような値であっても, 0.x=0 は成り立つ. a=−1 のとき, xに どのような値を入れて も.0.x=-2が成り 立たない. a-1 a²-1 a-1 (a+1)(a-1) α>−1 のとき, x=± 1 Va+1 =+ _va+I a+1 1 ->0より, a+1 a+1>0 よって, (込) -1 のとき,解なし a=1のとき,xはすべての実数つまり,α> 1 a≦-1 のとき,解なし -1<a<1,1<α のとき,x=Ya+1 2次方程式のズの係数が0かどうか (i) a=0 or (ii) a0 (x=( ) a+1 ) キ 0 に注意 株 ( )が0かどうか分からない =0 を解け . p.168 14 第 2 章

未解決 回答数: 1
数学 高校生

波線を引いたところについて質問です なぜg>0になるのですか?

補足 0. 1次不定方程式の整数解が存在するための条件 6は0でない整数とするとき,一般に次のことが成り立つ。 +by=1 を満たす整数x,yが存在するαともは互いに素………(*) このことは, 1次方程式に関する重要な性質であり, 1次不定方程式が整数解をもつかど うかの判定にも利用できる。 ここで, 性質 (*)を証明しておきたい。 まず,⇒については,次のように比較的簡単に証明できる。 (*)のの証明] ax+by=1 が整数解 x=m, y=n をもつとする。 また,aとbの最大公約数をg とすると a=ga', b=gb′ と表され am+bn=g(a'm+6'n)=1 g=1 よって,gは1の約数であるから したがって,aとは互いに素である。 ◆aとbの最大公約数が 1となることを示す方 針。 p.397 基本例題 103 (2) 参照。 α'm+b'n は整数, g>0 433 一方の証明については,次の定理を利用する。 4章 aとbは互いに素な自然数とするとき, 6個の整数 a1,a2, a 3, ・・・..., ab をそれぞれ6で割った余りはすべて互いに異なる。 証明 i, jを 1≦i<j≦b である自然数とする。 ai, aj をそれぞれ6で割った余りが等しいと仮定すると背理法を利用。 aj-ai=bk (k は整数)と表される。 よって a(j-i) =bk 差が6の倍数。 aとは互いに素であるから, j-iはもの倍数である。... ①p, gは互いに素で, pr しかし, 1≦j-i≦b-1 であるから, j-iは6の倍数にはな がqの倍数ならば, rは gの倍数である(p,a, rは整数)。 5 らず,①に矛盾している。 est したがって,上の定理が成り立つ。 t [(*)のの証明] 15 ユークリッドの互除法 aとbは互いに素であるから,上の定理により6個の整数α・1,上の定理を利用。 a•2, a·3,......., ab をそれぞれ6で割った余りはすべて互いに 異なる。 ここで,整数を6で割ったときの余りは 0, 1, 2, 6-1のいずれか(通り)であるから, akをbで割った余りが 1となるような整数ん (1≦k≦b)が存在する。識は akをbで割った商を1とすると ak=6l+1 すなわち ak+6(-1)=1 よって, x=k, y=-l は ax + by = 1 を満たす。 すなわち, ax+by=1 を満たす整数x, y が存在することが示 された。 このような論法は, 部屋 割り論法と呼ばれる。 詳しくは次ページで扱 ったので、読んでみてほ しい。

未解決 回答数: 1
数学 高校生

2番の問題です なぜa>-1、a<-1で場合分けしてるのですか?

こするのに で、(1 使用し, る. a¹, 下げ 例題 55 a 解答 2150% Focus ax SEJARLOT 考え方 文字係数を含む方程式を解く問題. 練習 55 *** Focus 文字係数の方程式 次の方程式を解け. x+1=0 (ii) a=0のとき よって, p.68 の例題 29 文字係数の不等式と同様に考える。つまり、見かけ上の最高次の項の 係数が0の場合とそうでない場合を分けて考える。 たとえば,(1)では, x2の係数αに着目すると, a=0のとき, x+1=0 となり, 1次方程式となる. a=0のとき, ax²-(a+1)x+1=0の2次方程式を考える。 のとき もとの方程式は、 -x+1=0 より, ax2+(-a-1)x+1=0 (Q+x+x)= (x-1)(ax-1)=0 より, (2)(a-1)(a+1)x²=α-1 (i) α=1のとき (2) (a²-1)x²=a-1 a=0 のとき, x=1 よって, a=0 のとき, x = 1, (ii)a=-1のとき もとの方程式は、 0.x2=0 このとき, xはすべての実数 x=1. ½-½ (ii) α≠±1 のと 平 α²-10 から、 両辺を²-1で割って, UN MA x²= 1 a+1 a>-1のとき, x = ±₁ a-1 のとき, 解なし a もとの方程式は, 0.x²=-2 これを満たす x は存在しないので、解なし CO x=1 a+1 完 **** BS)S-ve 1 √a+1 a+1 =+ a as-1のとき、解なし -US -1<a<1,1<a のとき, x=±- 平金 x2の係数が0のとき, x 2の項がなくなるの で,xの1次方程式に なる. -1→ -1→> α=1のとき, xがど このような値であっても, 0.x = 0 は成り立つ. a=-1のとき, xに どのような値を入れて も.0.x=-2 が成り 立たない. a-1 a²-1 aを定数とするとき, 方程式 ax2+(2-a)x-2=0を解け. =- 1 a+1 √a+1 a+1 (2) $30 II=D 文字係数の2次方程式(x2の係数) ≠0 に注意 a a-1 (a+1)(a-1) ->0 より, a+1>0 すべての つまり,a>-1 -1 -a-1 O 第2章 p.168 14

未解決 回答数: 1