学年

教科

質問の種類

数学 高校生

赤で囲ってある所がなぜこうなるのかわかりやすく説明してほしいです。数1の知識で分かるようにお願いします 🙇‍♀️🙇‍♀️😭

重要 例題119 2変数関数の最大最小 (4) 実数 x, yがx+y。=2 を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。また,そのときのx, yの値を求めよ。 【類南山大) 基本 98 指針> 条件式は文字を減らす方針でいきたいが,条件式x°+y°=2から文字を減らしても, 2x+yはx, yについての1次式であるからうまくいかない。 そこで,2x+y=tとおき, これを条件式とみて文字を減らす。 計算しやすいように y=t-2x として yを消去し,x+y?=2 に代入すると x?+(t-2x)=2となり, xの2次方程式 になる。 この方程式が実数解をもつ条件を利用すると, tのとりうる値の範囲が求められる。 実数解をもつ-→ D20 の利用。 3章 13 CHART最大·最小 =Dt とおいて, 実数解をもつ条件利用 2 次 解答 2x+y=tとおくと これをx+y°=2に代入すると ソ=t-2x の 実数 a, b, x, yにつ いて,次の不等式が成り立つ (コーシー·シュワルツの不 参考 式 整理すると このxについての2次方程式②が実数解をもつための条件は, 2の判別式をDとすると x+(t-2x)°=2 5x-4tx+?-2=0 等式)。 (ax+by)<(a'+b6)(x+y') [等号成立は ay=bx] 2) D20 a=2, b=1を代入すると ここで 4 2=(-2t)°-5(P-2)=-(?-10) x°+y°=2 であるから (2x+y)°<10 D20から これを解いて t?-10<0 ー/10 Sts/10 よって -10 2x+yい/10 (等号成立はx=2yのとき) このようにして,左と同じ答 えを導くことができる。 -4t_2t t=±/10 のときD=0 で,②は重解x=- 2-5 -をもつ。 2/10 t=±V10 のとき x=± 5 10 のから y=± 5 (複号同順) したがって x= 5 2/10 V10 ソミ のとき最大値V10 5 2/10 10 x=ー 5 のとき最小値 - V10 5 ソミー

回答募集中 回答数: 0
数学 高校生

解答の、t=±√10のときD=0で、〜の行から、なぜこの作業をするのかが分からなくなりました。教えてください。

実数x, yがx°+y°%=2 を満たすとき, 2x+yのとりうる値の最大値と最小値を 指針>条件式は文字を減らす方針でいきたいが, 条件式x°+y°=2から文字を減らしても, 重要 例題119 2変数関数の最大 最小 (4) 187 OOの vがx+y"=2 を満たすとき, 2x+yのとりうる値の最大値と最小値を [類南山大) 基本 98 2x+yはx, yについての1次式であるからうまくいかない。 そこで,2x+y=tとおき, これを条件式とみて文字を減らす。 計算しやすいように y=t-2xとして yを消去し, x+y°=2 に代入すると x?+(t-2x)=2となり, xの2次方程式 になる。 この方程式が実数解をもつ条件を利用すると, tのとりうる値の範囲が求められる。 実数解をもつ → D20 の利用。 31 1 CHART最大·最小 3Dt とおいて, 実数解をもつ条件利用 CHYBI 解答 2x+y=tとおくと これをx+y°=2に代入すると ソ=t-2x の 実数 a, b, x, yにつ いて,次の不等式が成り立つ (コーシー·シュワルツの不 等式)。 参考 x°+(t-2x)°=2 5x2-4tx+t°-2=0 整理すると このxについての2次方程式②が実数解をもつための条件は, 2の判別式をDとすると (ax+by)<(a+b)(x*+y°) [等号成立は ay=bx] D20 a=2, b=1 を代入すると 『ここで -=( 2=(-2t)-5(-2)=-(-10) 4 x°+y°=2 であるから (2x+y)°<10 D20から t2-10S0 よって これを解いて ーV10 Stい/10 -V10 <2x+y</10 (等号成立はx=2y のとき) このようにして, 左と同じ答 えを導くことができる。 -4t_2t をもつ。 三 t=±V10 のとき D=0 で, ②は重解x=- 2.5 5 2/10 V10 のから y=± t=+V10 のとき x=± 5 5 (複号同順) V10 とる。 2/10 xミ 5 のとき最大値、10 したがって y= 5 2/10 V10 のとき最小値 -V10 5 リミー x= 5

回答募集中 回答数: 0
数学 高校生

こういう問題のとき、最後はx,yは実数だから…っていうふうにして範囲を絞っていくと思うんですけどx,yがなんで実数って確定するんですか?虚数ではダメなんですか?誰か教えてください!お願いします!

重要 例題87 2変数関数の最大·最小 (2) yの関数 P=x°+3y?+4x-6y+2 の最小値を求めよ。 (2) x, yの関数=x°-2xy+2y?-2y+4x+6 の最小値を求めよ。 「なお,(1), (2) では, 最小値をとるときのx, yの値も示せ。 OO00 重要 例題 (1) 関数 y= (2) -1Sxミ 値を求め。 (1) 類豊橋技科大,(2) 類 摂南大1 指針> (1) 特に条件が示されていないから, x, yは互いに関係なく値をとる変数である。 Ix, yのうちの一方の文字(ここではyとする)を定数と考えて、Pをます。 指針>4次関数 に帰着で このようなときは,次のように考えるとよい。 (2) 繰と がtG 2次式とみる。そして, Pを基本形 a(x-b)°+qに変形。 2 残ったg(yの2次式)も,基本形 6(yーr)+s に変形。 3 P=aX°+by'+s (a>0, b>0, s は定数)の形。 →PはX=Y=0のとき最小値sをとる。 (2) xyの項があるが,方針は(1) と同じ。 Q=a{x-(by+c)}\+d(y-r)+sの形に刻 紙 CHART) 解答 の(1) x=tと yをtの式 CHART 条件式のない2変数関数 -方の文字を定数とみて処理 ソ=tー 解答 t20 の範囲 (1) P=x°+4x+3y?-6y+2 =(x+2)°-2°+3y?-6y+2 re=(x+2)°+3(y-1)-3·12-2 = (x+2)°+3(y-1)-5 x, yは実数であるから よって, Pはx+2=0, y-1=0 のとき最小となる。 ゆえに 最小となる (まず,x について基料。 よって (2) x°-2x- t=(x 5S▲次に, yについて基料 P=aX?+bY?+sの税 (x+2)°20, (y-1)20 (実数)20 -1SxSI (x+2=0, y-1=0を割 x=-2, y=l yをtの y=t のの範囲 x=-2, y=1のとき最小値 -5 と (2) Q=x°-2xy+2y°-2y+4x+6 =x-2(y-2)x+2y?-2y+6 =(x-(y-2)}-(y-2)°+2y?-2y+6 =(x-y+2)°+y°+2y+2 38- t=-2 0S+ x+ x+ の形に。 t=2 で まず,xについて基 t=-2 の ゆえに イ次に,yについて基 KQ=ar+b?"+s0% (実数)20 よって x, yは実数であるから よって, Qはx-y+2=0, y+1=0 のとき最小となる。 x-y+2=0, y+1=0 を解くと t=2 のと ゆえに よって (最小値をとるよ yの (連立方程式)の解 () 8 .0)=(c ゆえに x=-3, y=-1 x=-3, y=-1のとき最小値18動大郎 -1Sx= 以上から (1) x, yの関数P=2x*+y°-4x+10y-2 の最小値を求めよ。 87 (2) x, yの関数Q=x*-6xy+10u 練習 練習 88 なお 1) Dらと。

回答募集中 回答数: 0