数学
高校生

赤で囲ってある所がなぜこうなるのかわかりやすく説明してほしいです。数1の知識で分かるようにお願いします
🙇‍♀️🙇‍♀️😭

重要 例題119 2変数関数の最大最小 (4) 実数 x, yがx+y。=2 を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。また,そのときのx, yの値を求めよ。 【類南山大) 基本 98 指針> 条件式は文字を減らす方針でいきたいが,条件式x°+y°=2から文字を減らしても, 2x+yはx, yについての1次式であるからうまくいかない。 そこで,2x+y=tとおき, これを条件式とみて文字を減らす。 計算しやすいように y=t-2x として yを消去し,x+y?=2 に代入すると x?+(t-2x)=2となり, xの2次方程式 になる。 この方程式が実数解をもつ条件を利用すると, tのとりうる値の範囲が求められる。 実数解をもつ-→ D20 の利用。 3章 13 CHART最大·最小 =Dt とおいて, 実数解をもつ条件利用 2 次 解答 2x+y=tとおくと これをx+y°=2に代入すると ソ=t-2x の 実数 a, b, x, yにつ いて,次の不等式が成り立つ (コーシー·シュワルツの不 参考 式 整理すると このxについての2次方程式②が実数解をもつための条件は, 2の判別式をDとすると x+(t-2x)°=2 5x-4tx+?-2=0 等式)。 (ax+by)<(a'+b6)(x+y') [等号成立は ay=bx] 2) D20 a=2, b=1を代入すると ここで 4 2=(-2t)°-5(P-2)=-(?-10) x°+y°=2 であるから (2x+y)°<10 D20から これを解いて t?-10<0 ー/10 Sts/10 よって -10 2x+yい/10 (等号成立はx=2yのとき) このようにして,左と同じ答 えを導くことができる。 -4t_2t t=±/10 のときD=0 で,②は重解x=- 2-5 -をもつ。 2/10 t=±V10 のとき x=± 5 10 のから y=± 5 (複号同順) したがって x= 5 2/10 V10 ソミ のとき最大値V10 5 2/10 10 x=ー 5 のとき最小値 - V10 5 ソミー

回答

まだ回答がありません。

疑問は解決しましたか?