学年

教科

質問の種類

数学 高校生

この問題の(2)の解説の下線部がなぜこうなるのか全くわかりません。教えてくださいm(_ _)m

[頻出 ★★☆☆ \3 例題 1164 三角関数の最大・最小 〔4〕・・・ 合成の利用 のときの0の値を求めよ。 D 頻出 (1) 関数 y=sin03 cos) の最大値と最小値, およびそ (2)関数y= 4sin0+3cose (0≧≦T)の最大値と最小値を求めよ。 ESHRON 思考プロセス 加法定理 Sπ ReAction asin0+bcos0 は, rsin (0+α) の形に合成せよ 例題163 サインとコサインを含む式 0≤ 0 B M (1)y=sin0-√3 cost 合成 ↓ y=2sin0- 3 サインのみの式 S π 3 sin (0) 2 sin (0) S 図で考える 0 (2) 合成すると, αを具体的に求められない。 0 B1x →αのままにして, sinα, cosa の値から,αのおよその目安をつけておく。 π (1)ysind-√3 cost=2sin (0- 3 OMO より よって 2 したがって 3 ≤0- π 3 VII √3sin(0)≤1 23 -√3 ≤ 2sin(0-4) ≤ 2 O 3 20 -√3 4 -10 11 x √3 3 π π 0- 3 2 8-4 - 1 すなわち 5 すなわち 0 = _2 6 πのとき最大値2 -1 π π 0- 3 3 すなわち 0 0 のとき 最小値√3 3 2 y = 4sin0+3cos0 = 5sin (0+α) とおく。 5 4 ただし, α は cosa= sina 5 π 0 ≤0≤ より 2 π +α sin(1⁄2 + a) ~ ① より 0<a< であり, sinα <sin a≦ata≦ 10= 35 2 ... ・・① を満たす角。 0 4 y 1 1 <3> ---- π 4 3 から ≦sin (0+α) ≦1 5 最 3≤ 5sin(0+a) ≤ 5 kh, y t 最大値 5, 最小値 3 sina ≦ sin (+α) ≦1 +αである -1 0 mai 41x 5 162 曜 164(1) 関数 y=sin-cos (0≧≦)の最大値と最小値,およびそのときの 9 の値を求めよ。 (2)関数y=5sin0 +12cos (0≧≦)の最大値と最小値を求めよ。 (S) 293 p.311 問題164 π 3 である ARC

回答募集中 回答数: 0
数学 高校生

2問あります (1)番 なぜ y=e logx が 赤線のx= の式になるのでしょうか (2)番 青線の式でなぜy=- cosxを微分したのでしょうか そのまま y=-cosxで積分できないのでしょうか わかる方お願い致します

基本 例題 178 曲線 x=g(y) と軸の間の面積 次の曲線と直線で囲まれた部分の面積Sを求めよ。曲 (1) y=elogx, y=-1, y=2e, y 軸 00000 (2) y=COS (0≤x≤л), y= y=- 1 2 y軸 2' p.300 基本事項3 重要 184 指針 調べる。 まず、曲線の概形をかき,曲線と直線や座標軸との共有点を YA x=g(y) d 常に (1) y=elogx を x について解き, ♡で積分するとよい。 xについての積分で面積を求めるよりも,計算がらくに なる。 (2)と同じように考えても、高校数学の範囲では y=-cosx x=g(y) の形にはできない。 そこで置換積分法を利用する。 (1,2) ともに別解のような, 長方形の面積から引く方 法でもよい。 S= g(y)≥0 = g(9)dy 2e (1) y=elogx から y x=ee -1≦x≦2eで常にx>0 解答 よって 2e s=e=dy=[ee] -1 =ee-ee- =e³-e¹-1 (2) y=-cosx から dy = sinxdx よって S=Sxdy= dy=xsinxdx -[-xx]+$" com.x dx == XCOS 3 π =-237-(-1)+1.1/1 = π π +0= (1)の別解 (長方形の面積 x=exから引く方法) x S=e2(2e+1) -S(elogx+1)dx =2e3+e² -[e(xl0gx-x) +x 2e+1 |1|2| y π X 3 → ↑ ← |1|2|2|3| (2)の別解 (上と同じ方法) 2S-(+) ・π S= -S²² (-cos.x + 1)dx = x+sinx−2x] YA π 3 y=-cost 12 1 2、 S 0 + sinx -1 12 π 2 23 π π 2

回答募集中 回答数: 0