学年

教科

質問の種類

数学 高校生

全くわかりませんできれば明日までに回答が欲しいですおねがいします。

A2 20人の生徒に10点満点の数学のテストを行った。試験当日1人の生徒が欠席したため、 19人の生徒が受験し、19人の生徒が受験したテストの得点の平均値は5(点),分散は4で あった。 後日、欠席していた1人の生徒がこのテストを受験したところ、 得点が7点であった。 太郎さんと花子さんは、今回のテストの得点の分散について会話をしている。 2人の会話 を読み、 以下の問いに答えよ。 ただし, テストの得点は整数とする。 太郎: 受験者が1人増えたから,分散の値も変化するよね。 花子:そうだね。 でも、20人の受験者全員の得点がわからないから,どうやって求め たらいいかな。 太郎 次のようにして求めるのはどうだろう。 <太郎さんの解答> 試験当日にテストを受けた19人の受験者の得点をx (1≦x≦19, nは自然数)と おく。 試験当日にテストを受けた19人の受験者の得点の平均値が5, 分散が4であ るから {(x1-5)+(x2-5)+…+(x19-5)^= 4D すなわち (x1-5)+(x2-5)+…+(x19-5) 76...... ② よって、 20人の受験者全員の分散をVx とすると V2= 2l(x1-5)2+(x2-5)+…+(-5)+(7-5)2 =2/10(764) ......④ =4 花子: <太郎さんの解答> には誤りがあるよ。 (ア) がおかしいよ。 太郎: そうか。じゃあ、どうすればいいのかな。 花子: 分散は,(分散)=(x^2の平均値)(xm の平均値)? を利用して求めることができ るから、試験当日にテストを受けた19人の受験者の得点x (1≦x≦19 n は自 然数)について, (xm² の平均値) を求めることにより、 20人の受験者全員の得点 の分散を求めることができないかな。 (1) 試験当日にテストを受けた19人の受験者の得点の標準偏差を求めよ。 また, 花子さん が誤りを指摘した (7) に当てはまるものを,次の1~4のうちから1つ選び、番号で 答えよ。 1 ①立式 2 ①から②への式変形 3 ③ 4 ③から④への式変形 (2)19, nは自然数) の平均値を求めよ。 また, 20人の受験者全員の得点の 分散 Vs を求めよ。 (配点 20 )

回答募集中 回答数: 0
数学 高校生

・数学 ベネッセ模試 左側が答えで右側が問題です 青字の❓でかいたところからがわからないですよろしくお願いします

8 88 配点 (1) 2点(イ) 2点 (ウ) 2点 (2) 4点 解答 (1) [2(x-2)>x+a lx-1|<3 ①より 2x-4x+a x> a+4 ②より -3<x-1<3 -2<x<4 ①と②が共通範囲をもたないための条件は 4Sa+4 よって a≧0 (2) [2] 太郎さんと花子さんは次の 【宿題】 について考えている。 太郎さんと花子さんの次の 会話を読んで,下の問いに答えよ。 【宿題】 次の連立不等式を解け。 ただし, αは定数である。 絶対値を含む不等式の解 >0のとき |x|<c-c<x<e [2(x-2)>x+a ・① [x-1| <3 -2 4a+4 x ●等号がつくことに注意する。 x+4 (4) 2 <x<4 (ウ) 0 太郎 不等式①の解は, α を用いて表すと (ア 不等式 ② の解は, (イ) になる ね。 la+4の値と-2との大小関係に よって場合分けをする。 花子:そうだね。 不等式①の解には,a という文字が入っているから,αの値によって ①は x>a+4,②は2<x<4 である。 < 0 のときのこれらの共通範囲を求める。 ?i 2 <a+4 <4 すなわち 6 <a< 0 のとき 連立不等式の解は a+4<x<4 ( +4≦-2 すなわち as-6のとき 連立不等式の解は -2<x<4 (i), (ii)より, 求める解は 6 <a<0 のとき a+4 <x<4 S-6のとき -2 a+4 4 -27- a+4=-2 は (i), (ii) のいずれか に入っていればよい。 a+4 2 -2<x<4 圈 6<a<0 のとき a+4 <x<4 a-6のとき -2<x<4 完答への 道のり AC α+4の値と2との大小関係によって場合分けをすることができた。 B それぞれの場合において、 連立不等式の解を求めることができた。 連立不等式の解が変わるね。 太郎: 不等式①と②を同時に満たすxの値が存在しないようなαの値の範囲は, (ウ) だね。 このとき, 連立不等式は解をもたないね。 a≥ 花子: あとは,< (ウ) のときに, 連立不等式の解を考えればいいね。 (1) (イ) ] にあてはまる式を, (ウ) にあてはまる数をそれぞれ答えよ。た だし、解答欄には答えのみを記入せよ。 (2) a (ウ) のときに,αの値によって場合を分けて, 【宿題】 の連立不等式を解け。 (配点 10)

解決済み 回答数: 1