学年

教科

質問の種類

数学 高校生

191.2 記述(解き方)はこれでも問題ないですよね?

存在せず 必要条件 求める。 に、式を変 牛。 条件である -a-l ( 極限値)= なα, bのも ら -fla で、 きロー! じものにする 基本例題191 導関数の計算 (1) ... 定義, (x")'=nx-1 次の関数を微分せよ。 ただし, (1) (2) は導関数の定義に従って微分せよ。 (1+xS) 1 0のとき といって しては (1)y=x2+4x (3)_y=4x³—x²-3x+5 解答 指針 (1), (2) 導関数の定義 f'(x)=limf(x+h) f(x) h IJNS0 - (3) (4)次の公式や性質を使って, 導関数を求める。 (n は正の整数,k,lは定数) (r")=nx"-1 特に (定数)' = 0 {kf(x)+lg(x)}'=kf'(x)+lg'(x) (1)y'=lim- h→0 =lim =lim h→0 {(x+h)²+4(x+h)}-(x2+4x) h 1 x+h →08305+ (x+h)2-x2+4(x+h)-4x h =2x+4 y'=lim 2hx+h²+4h 1 h=lim(2x+h+4) x-(x+h). (x+h)x -h 1 h-ol (x+h)x h SxO+SI- =lim (2) b=-2 -1 条件である。 (3) y'=(4x-x-3x+5)、=4(x)(x²)、-3(x)+(5)、 h→0 (x+h)x となり、上の結果と一致する。 y= © 191 (1) y=x²-3x+1 (3) (4)y=-3x+2x3-5x²+7 (8+xs) (e+xs-x)=x -h (x+h)x +₁-1= 11.01+2とも =4・3x²-2x-3・1=12x²-2x-3)(1)g=11 (4) y'=(-3x+2x3-5x²+7)'=-3(x*)'+2(x²)、-5(x²)+(7)、 =-3.4x3+2・3x²-5・2x=-12x+6x²-10x 11r³+5r²-2x+1 であるから 1 を利用して計算。 1 x² p.296 基本事項 ③~5 f(x)=x2+4xとすると f(x+h) =(x+h)2+4(x+h) 項をうまく組み合わせて, 分子を計算する。 FON 導関数の定義式の分子 f(x+h)-f(x) を先に計算している。 検討x”の微分についての指数の拡張 STE p.296 基本事項 ④ において、(x)=x(nは正の整数)とあるが,nは正の整数に限らず, 負の整数や有理数であっても、この公式は成り立つ (詳しくは数学Ⅲで学習する)。 例えば、上の例題 (2) については, n=-1として, 公式(x")'=nx-1 を用いると ( ¹² ) = (x-¹) = − 1 ·x¯-¹-¹=-x^²=- <{kf(x)+lg(x)}、 =kf'(x)+lg'(x) <(r")=nx"-1 (定数)' = 0 練習次の関数を微分せよ。 ただし, (1), (2) は導関数の定義に従って微分せよ。 (2) y=√x (4) y=2x^-3x+7:0-9 (8) 301 6章 34 微分係数と導関数

未解決 回答数: 1
数学 高校生

191.2 これはつまりこういうこと(写真2枚目)ですか??

-8 彡する。 5 =3が成 値を求 る。 (a) →0 日本/例題 191 導関数の計算(1)…. 定義(x)=x・・・・ .n-1 次の関数を微分せよ。 ただし, (1), (2) は導関数の定義に従って微分せよ。 (1)y=x2+4x のにする な変形を ま (3) y=4x-x2-3x+5 解答 (1)y'=lim ② Ma 指針 (1), (2) 導関数の定義 f'(x)=lim(x+h)-f(x) を利用して計算。 JHS CD-t atta h (3),(4)次の公式や性質を使って,導関数を求める。 (n は正の整数,k,lは定数) (n) =nxn- on-1 特に (定数)' = 0 _{kf(x)+1g(x)}'=kf'(x)+1g'(x) (2) _,._{(x+h)²+4(x+h)}-(x2+4x) h h→0 =lim h→0 1 x+h =lim h→0 =2x+4 2hx+h²+4h h h 2 $xd+xs[-²xl- (x+h)²-x2+4(x+h)-4x[301+『sb-z= x h→0 =lim(2x+h+4) h→0 1_x-(x+h) (x+h)x (2)y= == (4)y=-3x+2x3-5x2+7 1 x (2+xs) (e+z1S-201) トコー であるから (x+h)x 1 ( ) = lim{x}=lim (x+h)x (3) y'=(4x3-x2-3x+5)'=4(x3)'-(x2)-3(x)'+(5)、 =4•3x²-2x-3.1=12x²-2x-3x+)(1+>$}&= 1 =(x+h)2+4(x+h) ISI-38.0J+項をうまく組み合わせて, 分子を計算する。 y'=(-3x+2x3-5x2+7)'=-3(x*)' +2(x3)'-5(x2)+(7) | 3・4x3+2・3x2-5・2x=-12x+6x²-10x p.296 基本事項 ③~5 -1-1=-x-2=- x f(x)=x2+4x とすると f(x+h) 導関数の定義式の分子 f(x+h)-f(x) を先に計算している。 <{kf(x)+1g(x)}' =kf'(x)+1g'(x) <(r")=nx"-1 (定数)' = 0 検討 の微分についての指数の拡張 p.296 基本事項 4 において, (x")'=nx"- (n は正の整数) とあるが, nl STRE 負の整数や有理数であっても,この公式は成り立つ (詳しくは数学Ⅲで学習する)。 例えば、上の例題 (2) については, n=-1として, 公式(x")'=nx"-1 を用いると P ) (6-ST (8) は正の整数に限らず, (E)

未解決 回答数: 0
数学 高校生

最大公約数が整数なのは何故ですか?(マイナスになることもあると思うのですが、) また、a.a+1が負の整数でも成り立つと書いてありますが、そうすると、m,nが自然数であることに矛盾してしまいませんか?

倍数、互いに素に関する証明 基本 例題 108 は自然数とする。 α+5は4の倍数であり, a+3は6の倍数であると (1) a き α+9は12の倍数であることを証明せよ。 (\2) 自然数a に対し, a と a +1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 (1) m,nを自然数として α+5=4m, a+3=6n と表される。 そして, 「aの倍数かつ の倍数ならば,aとbの最小公倍数の倍数」 であることを利用する。 また, αとが互いに素のとき 「ak が6の倍数ならば, kは6の倍数」 であることを 利用してもよい(別解 参照)。 (0:34.9) 18 18 3 (2) 互いに素である最大公約数が1 最大公約数をgとおいて, g=1であることを証明すればよい。 自然数 A, B についてAB=1⇔ A=B=1 を利用する。 答 (1)a+5,+3は,自然数m,nを用いて a+5=4m, a +3=6n と表される。 p.174,175 基本事項 1.5| ・① a+9=(a+5)+4=4m+4=4(m+1) a+9=(a+3)+6=6n+6=6(n+1) ② よって, ① より α+ 9 は 4の倍数であり, ② より α+9は 6の倍数でもある。 したがって, a +9は4と6の最小公倍数12の倍数である。 (2) α と a + 1 の最大公約数をg とすると a=mg, a+1=ng (m,nは互いに素な自然数) と表される。 (n-m)g=1 aが自然 a=mg を a+1=ng に代入すると キロ mg+1=ng すなわち は自然数であるから n-m=1,g=1 したがって, a と α+1の最大公約数は1であるから, a とα+1は互いに素である。 別解 (1) ①, ② から 4(m+1)=6(n+1) すなわち 2(m+1)=3(n+1) 2と3は互いに素である から,m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) だから、 183 =4.3k=12k したがって, α+9は12の 倍数である。 α を消去する。 ◆最大公約数は自然数。 ◆α と α+1 が負の整数で も同様に成り立つ。 4 13 紅 FE 女

解決済み 回答数: 2
数学 高校生

高校一年数学です。 ⑵で、「項ってなんだ!?」となってしまいました。 答えは31ですが、何が31なのでしょうか。 xに代入するんですか? とても疑問形でごめんなさい、、、 解説お願いします🙇‍♂️

E 重要 例題 展開式の係数 (4) (二項 \12 (1) (x- の展開式における, x の項の係数を求めよ。 x- 文字を入れるから価数 (②2)(x+2/12/2+1)を展開したとき, x を含まない項を求めよ。 文ない 1 2x2 CHART & SOLUTION 指数 指数法則の拡張 (第5章) 指数を 0 および正の整数から負の整数にまで拡張して、展開式の項の係数を求める。 まず 展開式の一般項を Ax ” の形で表す。 (2) 定数項(xを含まない項) はxの項である。 解答 12 (1)(x-23² ) の展開式の一般項は =a n a" xの項は r=3のときで, その係数は 3 12 Cr x1¹²-1( - 2 2 ² ) ² = 12 Cr ( - 12 ) ²/20¹² - + (-1 J + + ( )= + (x²) 12- 12-r x-2r x²r = 12 C + (-1/2-) ² x ² 5 (2)(x+12+1) の展開式の一般項は n p+g+r = 5 に代入して r=5-3g≧0,g≧0から よって ゆえに, x を含まない項は 5! 5! 12・11・10 13Co (-/12)-12.11.10×(-2)=5 12 XP-29 + 0!0!5!2!1!2! の利用 ■12-3 [大阪薬大 ] p.13 基本事項 6. 基本4, 重要7 72-3.3 = 9 55 5! 5! 1 9 1 1 1 * ² ( - ) ².1. か!g!r! か!g!z! p,g,r は整数でp ≧0,g≧0, r≧0, p+g+r=5 xを含まない項は2g=0 すなわち p = 24 のときであ る。 x=1 5.4.3 2・1 [愛知工大 3gtr5rのにそしたら、上のつかえる q=0, 1 (p, q, r)=(0, 0, 5), (2, 1, 2) ·=1+· -=31 08 12-3r=3 1x² 1 x2q (1) 1 (2) +0=1 PRACTICE 8° 次の式の展開式における. [ ]内に指定されたものを求めよ。 CHA (1), r n =x-29 (1) L ← x を含まない項は定 項でxの項。 (2 角 +059==+5.9 から, q を絞り込む。

解決済み 回答数: 1