学年

教科

質問の種類

数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0
数学 高校生

分からないのでどなたかお願いします🙇

〔2〕 表1は, 次郎さんの 「定期テストの結果」 の一部である。 次郎さんの学年には 全部で200人の生徒がおり、 結果欄には、テストの満点, 次郎さんの得点, 学年 全員の再点の平均値(以下、平均点)、次郎さんの前点の開発、20人中で 位が表示され、得点の分布圏には、学年全員の神経の度数分布が表示されている。 ただし、同じ得点の生徒は同じ順位とし、1位の生徒の人数が(n=1)の場合 その次に高い得点の生徒がいれば,その生徒の順位はx+n (位) とする。 得点の分布点 結果 満点(点) 得点(点) 点 平均 偏差値 順位 (位) 96~100 91~95 86~90 81~85 76~80 71~75 66~70 61~65 56~60 英語 100 74 65 48 56 136/200 47 / 200 1 0 10 4 18 12 表 1 100 68 71 29 32 32 25 11 10 11 15 26 27 20 26 (数学Ⅰ・数学A 第2問は次ページに続く。) この 「定期テストの結果」 を見て、 次郎さんと兄の太郎さんが話している。 次郎: 今回の国語のテストでは, 100位以内になることが目標だったんだけど, 残念。 太郎 その目標は、学年全員の得点の (1) 以上の点をとることと同じだね。 表1からわかるのは、今回はタチ点をとっておけば確実に目標を達 成できたということだね。 については,最も適当なものを、次の⑩~③のうちから一つ選べ。 最頻値 また、 ① 中央値 ②平均値 ③ 代表値 タチに当てはまる最小の整数を求めよ。 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0