学年

教科

質問の種類

数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0
数学 高校生

三角関数の問題です。 赤く囲んだところが分かりません。 よろしくお願いします。

63 図形の計量と加法定理の利用 三角形ABCにおいて, AC=3, ∠B=z, <C=8-7 とする。ただし, 0 は cos0=- << を満たす角とする。 (1) sin= であり, 8についての不等式が成り立つ。 ウの解答群 © <<* ① ②くく ③ << (2) sin ∠C= であり、AB=キ+√ク] である。 [ (3)辺BC上に, BAD 120 となるように点D をとることができる。このとき、 ケコ + サ AD= である。ただし、コシ とする。 各 (1)<6πより, sin0 0 であるから sin 0 = √1-cos² = √1-(-3)=√ 0 √2 sin-sin-sin = 2 1 2 2 24 sin= ....... ① 6 = sin-27- ...... ② 6 ① ④ 3 √18 sin -π= ..... ③ 6 -1 10 sin1 = ......④ <Point 大小関係は②>①>③>であるから / <<1/2(①) (2) 加法定理により sin ∠C = sin 0- sin(0-3) sincosmo-cos sin / B /6 = △ABCにおいて, 正弦定理により AB AC in (0-1) AB sinc 3 3+√6 6 2 3+√6 AB = 6• O <-114- 2 J2 こう解く! LLA STEP 不等式から問題解決のための 1 構想を立てよう ①~③で与えられている角を 正弦の値に置き換えて比較す る。 STEP 図をかいて、適切な定理を用 ②いよう 与えられた条件を図で表すと, 向かい合う辺と角が2組ある ことに気づくだろう。 このよう なときは, 正弦定理を用いる とよい。 A 分母を6にそろえて比較する。 B 加法定理 sin (a-B) =sinacos β-cosasinβ C 角度の情報が多い三角形に対し ては、 正弦定理を用いるのが有 効である。 9+3x

回答募集中 回答数: 0
数学 高校生

線を引いたところはなぜ普通の分散の計算じゃないんですか?そもそもuがなんなのかがよくわかりません

5-4 データの 377 うえる。 かといって, お小遣い 出題度 平均年齢が30 になった。 次 分散が3で というのは 人数が多い 11 (1)は(和)=(平均値)×(すべての度数)で計算すればいいんですよ ねこ そうだね。 308 基本例 例題 186 仮平均の利用 次の変量xのデータについて, 以下の問いに答えよ。 726,814,798,750,742,766,734,702 0000 (1) y=x-750 とおくことにより, 変量xのデータの平均値x を求めよ。 x-750 (2) u= 8 とおくことにより,変量xのデータの分散を求めよ。 (1)のデータの平均値を とすると, y=x-750 すなわち x=y+750である よって まずyを求める。 (2)x, uのデータの分散をそれぞれ sx2, Su² とすると, sx = 8's² である。よって、 ず変量xの各値に対応する変量uの値を求め, su2 を計算する。 (1) yのデータの平均値をyとすると y= | | (- {(-24)+64+48+0+(-8)+16+(-16)+(-48)}=4 (1)x1(726+..+ x=1/08 (726 としても求められるが 考事項 偏差値 までに学んだ平均値, 標準偏差を用いて求められる健 で、もう一方 解答 ゆえに x=y+750=754 x-750 (2) u= 8 とおくと, u, u2 の値は次のようになる。 答の方が計算がらく x 726 814 798 750 742 766 734 702 計 y -24 64 48 0 -8 16 - 16 -48 32 U -3 8 6 0 -1 2 -2 -6 4 u² 9 64 36 0 1 4 4 36 154 よって, uのデータの分散は PS (uのデータの分散) = 8 154-(1)-76-19 (u2のデータの平均 = (uのデータの平均 ゆえに、xのデータの分散は 値の 82×19=1216 sx=8²² があげられる。 複数教科の試験を受けた場合,平均 が各教科の実力の差を見極めることは難しい。粘 義される。 各教科の実力の差を比較しやすい。 偏差値は、偏差 データの変量xに対し,xの平均値をx ×10 によって得られる y = 50+ x-x Sx 偏差値の平均値は 50,標準偏差は 10 である 入学共通テストや, その前身である大学入試 偏差も発表されている。 それらの値を利用 ] ある生徒の大学入試センター試験の国語 通りであった。 大学入試センター試験得点 国語 (200点) 数学ⅠA (100点) 英語 (200点) 15 8 3教科の偏差値を求めると 150-98.67 国語 50+ 26.83 85-62.08 数学 50+ 21.85 170-118. とも C 均という。 参考上の例題 (1) の 「750」 のように,平均値の計算を簡u=x-x -の x を仮 単にするためにとった値のことを仮平均という。仮平 均を自分で設定する場合, 計算がらくになるようなもの を選ぶ。 具体的には,各データとの差が小さくなる値 (平均値に近いと予想される値)をとるとよい。 英語 50+ 41.06 上の計算から, 得点率で比較す が、偏差値で比較すると, 国語 偏差値を用いることで自分の相対位 正規分布 (詳しくは数学Bで学習) 次の表のようになることが知られて 偏差値 75 70 65

回答募集中 回答数: 0
数学 高校生

矢印以下のグラフの書き方が分からないです😭 CとDの両方のグラフの書き方を教えて頂きたいです😭😭

•5 最大・最小を候補で求める a>0 とする.f(x)=x(x-3a)(0≦x≦1)の最大値をαの関数とみてg (a) とおく. (1) g (a) を求め, ab平面にb=g(α) のグラフの概形を描け. (2) g(α)の最小値とそれを与えるαの値を求めよ. 最大・最小の候補を比較 閉区間 (a≦x≦βの形の区間)で定義された関 数 f(x) の最大値・最小値は '区間の端点での値'または'極値”のいずれか である.極値を与えるxの値が定数αの入った式である場合, 式だけで最大最 小を考えるよりも,先に最大値(最小値)の候補となる値('区間の端点での値' と‘極値')のグラフを描いてしまい,それらを比べる方が見通しがよい. 解答言 (1) f(x)=x(x-3a)2=x3-6ax2+9ax f'(x) =3x2-12ax+9a²=3(xa)(x-3a) 図1 y=f(x) 4a3 f(a)=4a3, f(3α)=0であり,a>0より y=f(x)のグラフは図1のようになる. 84 (関大 総合情報) 極 値 区間の端点での値 [極大値を与えるx=αが0≦x≦1に入っている かどうかで場合分け] O a 3a 積の微分法 {g(x)(x)}' =g(x)h(x)+g(x)h'(x) を使うと, f'(x) =1(x-3a)+x2(x-3a) 図 2 =(x-3a){(x-3α)+2x} 0≦a≦1のとき YA YA =3(x-3a)(x-a) 最大値はf(a)(=4α) f(1)(=(1-3a)2) 15 C の大きい方 (図2). a 1 セットで a 1 1≦a のとき 図3 最大値はf(1)(=(1-3a)) (図3) YA ここで チェリュー(エリー(エ)ギュー(仮) C: b=4a³ (0≤a≤1) D: b= (1-3a)2 のグラフを描く. .. . (4α-1) (a-1)2=0 0<a<1での, C, D の交点を求めると 4a=(1-3α) 2 4a3-9a2+6a-1=0 O X A la 図 4 b₁ 4 (い C:b=4a3 より (1/4,1/16) b=g(α) のグラフは,図4の太線部であり, 1/4≦a≦1 g(a)=(41-3a)²/ <a≤1/4, 1≤a 19 D: 1 16 b=(1-3a)2 16 この式は,f (a) = f (1) を変形 したものであるからα=1が解で あり, (a-1)で割り切れる. O 11 43 ←C,D のうち, 高い方をたどった ものがb=g(a) のグラフ. 1 (2)図4より,a= 4 のとき,最小値9 (12) (1/4) 1/16 をとる。 =

回答募集中 回答数: 0