学年

教科

質問の種類

数学 高校生

青丸のところまでは理解できるのですが、なぜ可能性1.2の表になるのか分かりません。()の順番も様々であらゆるパターンがありすぎてこの表に辿り着けません。 教えてください。

8. 正解 - (5) 解説 条件より 「Aは4回とも ムの1回目 2回目, 3回目, 4回目とも, 得点は0であった。 これを (0, 0,0,0) と表すことにする。 「Bの合計得点は1点であった」 ので、4回のゲームのうち, 1回だけ3位 であったと考えられる。 ただ、何回目のゲームで3位であったかはわからな い。とりあえずこれを (1,0,0,0) と表しておくことにする。 「Cは1回だけ3位以上になり,合計得点は3点であった」 ので,Cは1回 だけ1位になったと考えられる。 ただ、 何回目のゲームで1位であったかは わからない。とりあえず,これを (3,0,0,0)と表しておくことにする。 「Dは3回3位以上になり,合計得点は4点であった」ので,Dは1回2 位になり、2回3位になったと考えられる。 とりあえず,これを (2,1,1, 0) と表しておくことにする。 「Eの合計得点は6点であった」ので、可能性としては次の3通りが考えら れる。 「1位が1回、2位が1回、3位が1回」 「1位が2回」 「2位が3回」。 これらをとりあえず,3,2,1,0) (3,3,0,0) (2,2,2,0) と表しておく。 「Fの合計得点は10点であった」 ので、可能性としては次の2通りが考え られる。 「1位が2回, 2位が2回」 「1位が3回,3位が1回」。 これらを とりあえず (3322) (3,331) と表しておく。 以上を整理すると, A(0, 0, 0, 0) B (1, 0, 0, 0) C (3, 0, 0, 0) D (2, 1, 1, 0) E(3,2,1,0)(3,3,0,0) (2,2,2,0) F (3,3,2,2) (3,3,3, 1)

解決済み 回答数: 1
数学 高校生

数1範囲です、123合っていますか?あと4教えてください。よろしくお願いします🙇

ある公園の敷地内の池のほとりに, 右の図のよ うに三角形の憩いのエリア (三角形 PAB の周お よび内部)と2つの正方形の花壇 (正方形 PACD, PBEF の周および内部) を作る計画がある. 点A, B, H, K の位置は決まっており, 池 (公園の敷地内の図) 「憩いの エリア B AH=2m, BK=6m, HK=4m, 16m A 花壇 AH⊥HK, BK⊥HK 2mi である. 点Pの位置は図の線分HK 上のどこかにとる ことができ、2つの花壇の部分には1m²あたり2 万円の工事費用がかかる. H P ~4m 花壇 D F (1) PH=1m とする. (i) 正方形 PACD の面積を求めよ. 5m² (i) 2つの花地にかかる工事費用の合計金額を求めよ。 100万 (2) PH=xm (0≦x≦) とする. (i)2つの花壇の面積の和をxを用いて表せ、X-4x+28 (ii)2つの花壇にかかる工事費用の合計金額を最小にするの値と そのときの工事費用の合計金額を求めよ. 2 m H 4 m B 16m 円 (3) さらに, 憩いのエリアには1mあたり1万円の工事費用がかかるとすると, 2つの花壇 と憩いのエリアにかかる工事費用の合計金額を最小にするには点Pの位置をどこにとれ ばよいか.また,そのときの工事費用の合計金額を求めよ. 【高校1年生】2月の河合模試 全統の数学過去問 (4) 三角形ABC があり、 その卵ません。 教えて下さい品

解決済み 回答数: 1
数学 高校生

醜くてすみません、数1二次関数です、どなたかよろしくお願いします🙇

14:34 1月25日 (土) 2次関数 educational-expert.com 86% f(x)=x²-2x-4 がある. (1) f(x) <0 を満たすxの範囲を求めよ. 1-554141455 (2)放物線y=f(x)を原点に関して対称移動し、放物線y=g(x) とする. (i) g(x)を求めよ。 yニー(a+1)+5 (i)(x) <0g(x)>0 を同時に満たすxの範囲を求めよ. kxくけ (3)kを実数として,(2)の放物線v=oly) をy軸方向にkだけ平行移動した放物 y=h(x) とする 700√(x)>0 を同時に満たす整数がちょうど個となるよう なんの値の範囲を求めよ. or 【高校1年生】2月の河合模試 全統の学過去問 (3) 1.2.3当てますか? N(3)方針はかかるの (公園の敷地内の図) の敷地内の池のほとりに、右の図のよ うに三角形の憩いのエリア (三角PABのお よし内部)と2つの正方形の花壇(正方形 PACD PBEFの周および内部) を作る計画がある. 池 憩いの 点A, B, H, K の位置は決まっており HKF4m, 2 m エリア AH=2m, BK=610, AH+HK, BK⊥HK でる. 点Pの位置は図の線分HK 上のどこかにとる 4 m |花壇 ことができ、2つ の部分にはあたり 万円の工事費用かか 18 こああなる (1) PH=1とする (i) 正方形 PACD の面積を求めよ. (ii) 2つの花壇にかかる工事費用の合計金額を求めよ. (2) PH=xm (0x4) とする. (i) 2つの花壇の面積の和をx を用いて表せ. B Arth 16m 花壇 +5千k この範囲や (ii)2つの花壇にかかる工事費用の合計金額を最小にするxの値と, そのときの工事費用の合計金額を求めよ. ですが解けません 教えて欲しい です 4 m かからない (3) さらに, 憩いのエリアには1m² あたり1万円の工事費用がかかるとすると, 2 と憩いのエリアにかかる工事費用の合計金額を最小にするには点Pの位置をどこにとれ ばよいか. また, そのときの工事費用の合計金額を求めよ. 【高校1年生】 2月の河合模試 全統の数学過去問 (4) です。 三角形 ABC があり、 を満たしている. AB=3, AC=2, COS ∠BAC=- (1) 辺BC の長さを求めよ. (2)(i) 三角形ABCの外接円の半径R を求めよ. (ii) 三角形 ABCの面積を求めよ. (3) 平面 ABC上にない点Pを, PA=PB=PC を満たすように空間内にとる. また, 点Pから平面 ABCに下ろした垂線と平面 ABCの 交点をH とする. (i) 四角形 ABHC の面積を求めよ. 10 distinti P73+A Bを通る面を考える この映画の半径が、 70

解決済み 回答数: 1