学年

教科

質問の種類

数学 高校生

(1)の赤線部の2という数字はどこから来たのでしょうか?

る。 実戦問題 14 2次不等式が成り立つための条件 f(x) = x + 2kx +3k+4, g(x) = -x+4kx-10 について (1) 0≦x≦2におけるf(x) の最小値をm とすると k< アイ のとき m=ウ k+ I アイ Sk<オのとき m= カ 1k²+キ k+ク k≧オのとき m= ■ケ |k+ コ 2 であるから, 0≦x≦2を満たすすべての実数xについて, 不等式 f(x) > 0 が成り立つような定数kの値の範囲は k> サシ である。 (2) すべての実数xについて, 不等式 f(x) > g(x) が成り立つような定数kの値の範囲を求めると 3TR567ad ス セソくん< ス +√ セソ である。 次に, すべての実数 X1, X2 について 不等式 f(x1) > g(x2) が成り立つような定数kの値の範囲を求めると, タチ <<テである。 ■ツ 01 4 (i) k<-2のとき 430 2-k (1) f(x)=x2+2kx+3k+4= (x+k-k+3k +4 (i) -k > 2 すなわちん <-2のとき m = f(2) = 7k+8 (ii)0<-k≦2 すなわち -2≦k<0のとき Ques m=f(-k)=-k+3k+4 0 KE y=f(x), ps. 0 com (i) -k ≦ 0 すなわちん ≧0のとき m=f(0)=3k+4 0≦x≦2を満たすすべての実数x について, 不等式 f(x) > 0 が成 り立つための条件は m>0 であるから NIW & e (ii) -2≦x<0 のとき 8 (i) k<-2のとき m=7k+8>0 より k> -- (0³200+ 0 nix)=0a0+049 7 eb y=f(x)! k <-2 であるから 解なし (ii) -2≦x<0 のとき m = k+3k+4>0 より -2≦x<0であるから -1くん<00miz -1 <k < 4 4 O-k 2 (i) k≧0のとき m=3k +4 > 0 より k> - TLV 3 ん≧0であるから (2000pied ( ≧0のとき Bans k≧0 Av (i) ~ (i) より 求めるんの値の範囲は k> -1 (2) h(x)=f(x) - g(x) とおくと ·SastS+ h(x)=(x2+2kx+3k+4)-(-x+4kx-10) =2x²-2kx+3k+14 = 20 = 2(x - 12 )² - 12/²2 +3k +14 すべての実数xについて不等式 f(x) > g(x) が成り立つとき h(x) = f(x) = g(x) > 0 k² ・よって, +3k + 14 > 0 より k²-6k-28 <0 2 12 na 3-√37<k<3+√37 これを解いて 次に g(x)=-(x-2k) +4k²-10 すべての実数 x1, x2 について不等式 f(x1) > g(x2) が成り立つとき (f(x) の最小値)> (g(x) の最大値) IS nud よって, ゆえに k2+ 3k +4 > 4k² -10 より 5k²-3k-14 < 0 (k-2) (5k+7) <0 7 したがって 求めるんの値の範囲は <<2 15 攻略のカギ! Key 1 つねに成り立つ不等式f(x) は, (f(x) の最小値) > p とせよ (1) すべての実数xについて, 不等式f(x) > g(x) (2) すべての実数x1, x2 について, 不等式f(x1) > g(x2) 解答 Key 1 Key 1 Key 1 x iy=f(x) 2 x 2x²-2kx+3k+ 14 = 0. --の判別式をDとして D 124 =k-2(3k+14) < 0 からんの値の範囲を求めても よい。 y=f(x) X2 (f(x) g(x) の最小値) > 0 ⇒ y=g(x) (f(x) の最小値)> (g(x)の最大値) 2章 2次関数 35

回答募集中 回答数: 0
数学 高校生

(3)の意味がよくわからなくて、なんで7になるのか? というのと ⑦が成り立つのがなんでこの不等式になるのか? 分からないので教えてください!!! よろしくお願いしますm(_ _)m

以 「数字B2国語 ※Z会の映像「共通テスト対策映像授業」 は, 共通テスト攻略演習とは別料金となります(別 冷お申し込aみが必要です) 一分条 第1問 アMEGA1-21H1-01 解説 2ニェいa+ (2) - 号のとき、6は (1) a=2- 5 より ats ん1 で。。 2+ 5 (2- V5)(2 + 5) -Sェs号 であるから、(かつ6 より 2-5 = -2- V5 イ分母の有理化。 (6 こ (6 = (2- 5) + (12- V5) = -2、5 g+ 4左のような数直線をかいて考ち えるとわかりやすい。 -号SェS4 よって、二つの不等式の, ② をともに満たす整数xは 4 となる。ここで エ=-1, 0, 1, 2, 3, 4 であるから 4<5<9 の6個ある。次に,③ または6'より (子++) -\+0 そして、2<5<3より -1<α<0となるので J- 6a +9=Ca-3)? %= la-3|=3-a -3SIS -2=(-25)?-2=18 l=2-5 tっ 2<15c32cらく3 号+-+ P= よって、二つの不等式①, ② の少なくとも一方を満たす整数 ェ は エ=-3, -2, -1, 0, 1, …, 8 の12 個ある。 (3) 題意を満たすのは, 二つの実数の部分集合 A= {z|-3<xハ4}, 4a<3より。 43を満たす整数 x は8個。 6Yを満たす整数ェは 10 個 であるから,前半の結果と合 わせて、求める個数を 8+10-6= 12(個) と計算してもよい。 ル-2 -2 -0 来せ Ila|-3|=|-a-3|=|a+3|=a+3 . Ja?- 6a +9+|lal-3|= (3-a)+(α+3) =6 Aa> -3 より。 -2-3--7 a+2 (2) X=a+1, Y=a-5とおくと X=3-J5, Y=-3-5 -lcdco.について B イ与式は a+1, a-5の対称式 なので、これらの基本対称式 で表せる。ここでは,考えや すいように X, Y と置き換 A ACBかつ AキB …………の) +2-3 3 となるので ;a+6 A= B のときは、D は2を満たす ための必要十分条件となるの で、不適であることに注意し のときである。 X+Y=-2,5 えた。 ここで,a>0より,a+6>4はつねに成り立つから,① が成り XY = (-J5+3)(-、5-3)= -4 AX, Y の基本対称式 X+Y, XY で表すことを見越して, あらかじめ計算しておく。 立つのは よう。 したがって a+2 -25-3 . a27 できなかったらココを復習!) イX, Y の対称式を基本対称式 X+Y, XY で表す。 必要条件と十分条件 (「考え 方2」参照) = X2+ XY + y2= (X+Y)? - XY のときである。これが,求める aの値の範囲である。 = (-25)?- (-4) = 24 考え方 1補足絶対値や根号をはずす 一般に,実数aに対して (1) 不等式のを解くと 3 -3SrA4 (絶対値の中身2x-2 の正負 で場合を分ける。 また,不等式 2は, ェZ1のとき 2ェ-2Sr+a+4 であるから, a>0より1<a+6と合わせて = lal である。a= -3 の場合などを考えてみるとわかりやすいだろう。また, 実数aに対して, その絶 対値|a| は Sa+6 の [a (az0のとき) 1SxKa+6 la|= -a (a<0のとき) である。絶対値の中身の正負によって場合を分けて考える必要がある。 絶対値の中に絶対値が入っていても同じように考えればよい。たとえば ||ェ-al (a20のとき) ||z+al (a<0のとき) 一方, エ<1のとき ー(2r -2) <x+a+4 2-4+2 Aa>0より であるから, a>0より - く1と合わせて |ェ-|a|| = { -2<-番く! -425IS1 であり、a20のとき よって, ③, ⑤ より, 不等式 ② を解くと ei-T1-09

回答募集中 回答数: 0
2/2