学年

教科

質問の種類

数学 高校生

左下半分から右上半分で言っていることって、指数部分は整数しかこないということであってますか?

これで, In-yn=(zo-yo) (2a-1)=(2a-1)" xn+yn=(xo+yo)1" d =1 ©+@ だから, で、 2 スタートならn-1乗ですが co-yo スタートなのでn乗です。 Xn= =1/2(21-1)+1/2 あとは,数列{.xx} が収束するための必要十分条件です。 計画 京大では,極限の問題であっても、「求めよ」ではなく,本間 のように「収束する (必要十分) 条件を求めよ」としてくる場 合がよくあります。 京大らしいですね。 本問ではn→∞で,In の式でnがからんでいるのは (2α-1)” の部分 だから,これは「無限等比数列の極限」になります。これとカン違いしや すいのが「指数関数の極限」で,収束条件がごちゃごちゃになりやすいの が「無限等比級数」です。ここで確認しておきましょう。 まず、「無限等比数列」、 「指数関数の極限」は, 無限等比数列 8 (r>1のとき) limr"=1(r=1のとき) 00-11 0 (-1<r<1のとき) r≦-1のとき{r} は振動 しかし、指数関数のは実数であり,α ≦ 0 はダメです。 たとえば, a=-2, として、dioを勝手に<0の場合に拡張して使うと、 (-2)=√-2=√2i となり虚数になってしまいます。 高校数学では, 実数値を入れたときに実 数値を出す 「実数関数」 しか扱いません (大学に入ると, 複素数に拡張さ れた 「複素関数」を扱います)。 したがって, a< 0 はマズイんです。a=0 は何乗しても0,α=1は何乗しても1だから, α = 0 1 もはずして, んですね。 指数関数では,a > 0, a ≠1で考える ただし、問題で与えられた数式の形によっては, α = 0 やα=1の場合 について, 1=1やO* = 0 (0° は高校では未定義なので除外して考えます) を使って計算することもあります。 次に、「無限等比数列」 と 「無限等比級数」は, ◆無限等比数列の収束条件 数列{r-"}が収束するため の必要十分条件は, -1<r≤1 無限等比級数の収束条件 無限等比級数 a + ar + art...... 無限等比数列の方は,∞と振 動の場合がダメなので, +arn-1+………… が収束するための必要十分条件は, -1<r<1 または α = 0 で,その和は, limr"=1となる1 a -1<r<1のとき, wwwwwww 1-r limr" = 0 となる-1<r<1 wwwwww 指数関数の極限 8 (a>1のとき) limax 0 (0 <α <1 のとき) どちらも●の形なのですが、指数関数ではα=1やa≧0は考えませ ん。 大丈夫ですか? 無限等比数列のnは自然数だから,r≧0であっても OK です。たとえ ば,r=-2なら, (-2)'=-2, (-2)^=4(-2)=-8, のように値が定まります。 11-00 を合わせて, 収束する条件は, -1<r≦1←r=1のときも収束します。 a=0のとき,0 一方,無限等比級数の方は、部分和をS とすると, ●a=0のとき S=0 ∴ lim S=0 (収束) ●a≠0,r=1のとき n→00 Sn=na ... 数列{Sn} は発散 ●a0r1のとき Sn a(1-rn) r=1のときはこの 1-r 公式が使えません。 248 第7章 極限・微分 テーマ32 極限 ① 249

解決済み 回答数: 1
数学 高校生

数1️⃣三角比 一枚目青の部分の理由がわかりません。どうイメージすればいいのでしょうか?2枚目3枚目あたりのことは頭に入っています わかる方よろしくお願いします🙇

木の ななめ みたいな 三角比の値の範囲 第1節 三角比 145 00-081 まる。よって、今後は半径がりの半円で考える。 三角比の値は,いずれも半円の半径に関係なく, 0だけによって定 第4章 図形と計量 (90° たおす つぶれた →ななめが1 右の図のように, 原点Oを中心とする 半径1の半円をかき,この半円とx軸の 正の部分の交点をAとする。 0° <90° y4 半円周上に,点P(x, y) を mFL こっちからみれば たて P(x,y) T(1, m) AOP=0 (0°≦≦180°) よここななめ となるようにとると, 0 の三角比は,点P の座標を用いて,次の式で表される。 1 y -1 0 x 1 x 符号は, 0で われない sin0=y, cos0=x, tang=卫たて ななめ ななめ よこ 90°0≦180° から! ここで0≦x≦1,-1≦x≦1であるから, 0°0≦180°の sind, cose の値について 次のことが成り立つ。 y 1 P(x,y) y [H A 0≦sin0≦1,-cos -1x 0 15 11 x また, 0≠90°のとき, 点A(1,0)を通 りx軸に垂直な直線と, 直線 OP の交点 をT(1, m) とすると mp. T(1, m) 止めて tan0=y= m =m x 1 80° である。0°≧≦180°,0≠90°の範囲で0を動かすと, は実数全体を 動く。 したがって, tan 0 はすべての実数値をとる。 0 が 0°から 180°まで変わるとき, sin, cos 0, tan の値は, それぞ 深める ように変わるか説明してみよう。 日が大きくなるとtan大きくなる(90°除)

解決済み 回答数: 1
数学 高校生

青い部分の言っている事の意味がわからないので、教えて欲しいです(*.ˬ.)"

また 脱 a 1 =a"X =a"xa""= a" a" a (²)" - (ax +) = (ab" ")" = a*b=a" x 1 a" b" b" 注意 0^(-nは負の整 数)と0°は考えない よって、 21'3' が成り立つ。 ■県東根 (定義しない)。 正の整数とするとき. n 乗すると αになる数, すなわちx=a となる数xをan乗根という。 3'=81, (-3)*=81 であるから,3と3は81の4乗根であ (5)=125であるから,-5は125の3乗根である。 なお、2乗根 (平方根) 3乗根 (立方根), 4乗根, 累乗根という。 On乗根(x=αの解) について man をまとめて 数学Ⅰでは, 「2乗する とαになる数をの 平方根 (2乗根) とい う」と学んだ。 ここは この考え方の拡張であ る。 y4 y=x" y4 y=x" 方程式xa の実数解は、曲線 y=x” と直線 の共有点のx座標であるから,実数αの 根について、次のことがわかる。 y=a a y=a Na nが奇数の場合任意の実数aに対して 0 x O Va X nが偶数の場合 1つあり、これを α で表す。 >0のとき,正と負の1つずつあり、その正の a' y=a' a' y=a' 5章 5 奇数 n:偶数 "で表す。 このとき,負の方はva である。 28 =0のとき, a = 0 とする。 <0 のとき,実数の範囲には存在しない。 なお, an乗根 α という。 でも偶数の場合でも、 が奇数の場合 については,n √0=0, a>0のときa>0 である。 注意 は今までと同 様に √ と書く。 <n が偶数のとき 負の 数のn乗根は存在し ない。 指数の拡張 ここで、αのn乗根 と n乗根 αの違いをはっきりさせておこう。 16の実数の4乗根は, 4乗して16になる実数で22 の2つある。これに対し, 4乗根 16 すなわち 16 は 4乗して 16になる正の数を意味するから, 2 だけである。 ■累乗根の性質 また >0.60から √a√√b>0 (Na/6)" =(ya)"(2/6)"=ab よって、定義から Vav6="ab ゆえに 41 が成り立つ。 ■無理数の指数 例えば,√3=1.732...... に対して, 173 1732 Ta a¹.73, a¹-732] 15 [a", a 100, a 1000, が限りなく近づく1つの実数値をαの値と定義する。 一般に,a>0 のとき, 任意の実数xに対してαの値を定めること ができ (2) がα>0,b>0 として, r,s が実数の場合 の指数法則 でも成り立つ。 16=2 <42~5も同様に証明 することができる。 <n乗して ab となる正 の数は ab <指数が有理数である数 の列。 273

解決済み 回答数: 1