学年

教科

質問の種類

数学 高校生

数C複素数平面で質問です (1)で|-i|=1となる理由がわからないです おしえてください

C2-16 (364) 第5章 複素数平面 例題 C2.8 複素数の絶対値(2) 複素数 z が z=-i を満たすとき,次の問いに答えよ. (1)|z|の値を求めよ. (2)|z+2i|2+2zi の値を求めよ. 考え方 (1) ||=|-i|より, | 解答 ||=| ||=1 |2|-1=(|z|-1)(|z|'+|z|+|z|+|z|+1)と変形する. M (2)|z+2i=(z+2i(z+2i)=(z+2i)(z-2il |2z-i|2=(2z-i) (2z-i)=(2z-i) (2z+i) これと (1) を利用する. (1)より,|2°|=|-il [=||=|8||=|0 |-i|=1であるから,||=1 ||=1 したがって, |z|-1=(|z|-1)(|2|+|2|3|2|+|z|+1)=0 |2|+|2|3|2|+|z|+1>0 **** 2=-iの両辺の絶 対値をとる. |z|-1=0 または |z|*+|z|+|2|+|2|+1=|| ここで, z|≧0 より よって, ||=1 (2) z+2i|2=(z+2i)(z+2i) |x|2=zz =(z+2i)(z-2i)=zz2iz+2iz+4 |2z-i|= (2z-i) (2z-i |z+2i|+|2z-i|=5(1+1)=108ntorr 注》 複素数平面上の図形 (p. C2-52~) では、 右の図の点P(z)は|z|=1 より単位円周上の点|z+2i|=|z-(-2i)はP(z) A(-2i) =(2z-i) (2z+i)=4zz+2iz-2iz+1 よって,z+2i2+2z-i=5(zz+1) ここで,zz=|z|=1 より ++8= to (1)より,|z|=1 距離である. との距離 12z-i=22-122-212はP(2)とB はP(z)とB(1/2)との B 112 Y&/0/+8+ よって,|z +2i2+|2z-i|=PA'+4PB2 となる.+a+b1 では,幾何を用い PA'+4PB'=10 となることを証明する. 単位円と虚軸との交点をC(i), D(-i) とすると,Pが虚軸上の 点でないとき,△POAにおいて中線定理 (パップスの定理) から, PA'+PO'=2(PD'+DO') D(-i)-1 A(-2 PO=DO=1より PA'=2PD'+1 …① 同様に,△PCO において,PC2+PO'=2(PB'+BO^) が得られ, PO=1, BO=123 より 2PB=PC'+ ① ② より PA² Ann? 2

解決済み 回答数: 1
数学 高校生

複素数平面 ?のとこがよくわかりません。

2-16 (364) 第5草 例題 C2.8 複素数の絶対値(2) 複素数zが=-i を満たすとき,次の問いに答えよ . (1)|zの値を求めよ. (2)|z+2i|+|2z-i の値を求めよ. 考え方 (1) 2|=|-i|より, |z5|=1 |2|-1=(|z|-1)(|z|+|z|+|z|+|z|+1)と変形する. (2)|z+2i|2=(z+2i)(z+2i)=(z+2i)(z-2i) |2z-i=(2z-i) (2z-i)=(2z-i (2z+i) **** これと, (1) を利用する. ++ 解答 (1) 2=-iより,||=|-i| ||| |2|=1 i=||=|8|=|| |-i=1であるから,| ||=1+1=1080p+r/ |z|+|z|+|z|+|z|+1>0 |z|-1=(|z|-1)(|z|^+|z|+|z|+|z|+1)=0 したがって, ここで, z|≧0 より, よって, ||=1 (2) z+2i|2=(z+2i) (z+2i) =(z+2i) (z-2i)=zz-2iz+2iz +4 6|2z-i-(2z-i)(2z-i) iの両辺の 対値をとる。 |z|-1=0 または ||^+|z|+|z|+||||| |z|2=zz =(2z-i) (2z+i) =4zz+2iz-2iz+1 よって, |z+2i|+|2z-i=5(zz+1) ここで2z=|2|2=1 より +in+e= (1)より,|z|=1 |z+2i|+|2z-i=5(1+1)=10 注 複素数平面上の図形 (p. C2-52~) では、 右の図の点P(z)は|z|=1 より単位円周上の点|z+2i|=|z(-2i)はP(z) A(-2i) 1C(i) との距離, 2zil=2z- i 2 の 12 - 1/2はP(2)とB(1/2)との 12 距離である。 PO=DO=1 より PA2=2PD'+1 よって, | z+2i2+|2z-i|=PA'+4PB2 となる. +0 +1 では,幾何を用い PA'+4PB' = 10 となることを証明する. 単位円と虚軸との交点をC(i), D(-i) とすると,Pが虚軸上の 点でないとき,△POAにおいて中線定理 (パップスの定理)から、 PA'+PO'=2(PD'+DO") D(-i) ←-1 A(-21) PO=1, BO=1/2より 2PB=PC2+ 同様に, △PCO において PC2+PO'=2(PB'+BO^) が得られ, + ・① 2 ·②

解決済み 回答数: 1
数学 高校生

(3)の解説がわからないです! 精講に球面Cと直線lが異なる2点で交わるときOH<半径とありますがそれも分からないので教えて欲しいです!!

263 うる値の範囲を求めよ. (3) 球面Cと直線1が異なる2点P,Qで変わるようなαのとり 基礎問 262 第8章 ベクトル 168 球と直線 座標空間内に, 球面C:x+y+z=1 と直線があり、直線 1は点A(a, 1, 1)を通り, u = (1, 1, 1) に平行とする.また, a1とする。このとき,次の問いに答えよ. (上の任意の点をXとするとき,点の座標を媒介変数を 用いて表せ (2) 原点Oからに下ろした垂線との交点をHとする.Hの座 標をαで表し,OH を αで表せ. (2) Hは上の点だから, (1) を用いて OH=(t+a, t+1, t+1)と表せる. ここで,OH だから, OH・ü=t+a+t+1+t+1=3t+α+2=0 H 3 2a-2 た 1 t=-Q+2 このとき,t+α= 3 t+1=q+1 よって、(24/2g+q+1) 2a-2 -a+1 3 3 また, OH2=- 9 (29-2)2 =14/01(1-1)+1/2 (a+1)+1/18( (-a+1)2 (デ = (a-1)2 (4) (3) のとき,∠POQ= となるαの値を求めよ. 1 33 2点間の距離の公式 2 (1) A (No, Yo, Z0) を通り, ベクトル u = (p, q, r) に平行な直 a≧1 だから,OH=6l4-1= (3) OH<1 だから 6 3 √(a−1) √A²=\A\ 3 (a-1)<1 : 1≦a<1+k tu √6 2 ◆仮定に a≧1 がある 1 H 線上の任意の点をXとすると OX = (No, yo, zo)+t(p,g,r) とせます. (2)日は上にあるので, (1) を利用すると, OH がαと tで表せます。 そのあと, OH・Z =0 を利用して, t をαで表します. (3) 球面Cと直線が異なる2点で交わるとき OH<半径 が成りたちます. (4)POQ=2をOP・OQ=0 と考えてしまっては,タイヘンです. 0 それは,PとQの座標がわからないので, OP, OQを成分で表せないから です。座標やベクトルの問題では、幾何の性質を上手に使えると負担が軽く なります。 解答 (1)OX=OA+tu=(a,1,1)+(t,t,t)=(t+a, t+1, t+1) :.X(t+α, t+1, t+1) (4)POQ= だから, OH= √2 -(4-1)=- /3 3 a=1+ 2 2 ポイント 中心 (a, b, c), 半径の球面の方程式は 演習問題 168 (x-a)+(y-b)2+(z-c)2=r2 いい 168において, (1)POQ=7 となるようなαの値を求めよ. (2) 線分 PQ の長さが最大になる点Aに対して, 球面C上の動点R をとり, 線分AR を考える 線分ARの長さを最小にする点Ro の座標を求めよ. 第8章

回答募集中 回答数: 0