学年

教科

質問の種類

数学 高校生

2(1-logx)/x^2=0のxの値の求め方について詳しく知りたいです。 どなたかお願いします🙇 2枚目の考え方であっていますか?

244 関数のグラフの概形 (1) 発展例題163001 基礎例題 150 関数 y = (logx ) 2 の増減, 極値,グラフの凹凸, 変曲点, 漸近線を調べて) グラフの概形をかけ。 CHARI & GUIDE ① 定義域 x, yの変域に注意して, グラフの存在範囲を調べる。 ② 対称性 x 軸対称, y 軸対称, 原点対称などの対称性を調べる。 ③ 増減と値 y'の符号の変化を調べる。 ④ 凹凸と変曲点y" の符号の変化を調べる。 ■解答 関数の定義域は, 10gxの真数条件から 210gx ⑤ 座標軸との共有点 x=0のときのyの値, y=0 のときのxの値を求める。 ⑥ 漸近線x→±∞ のときのりやり→±∞となるxを調べる。 PRO y'=2(logx) (logx)'=- y' xC 20 J² y y"=- y'=0 とするとx=1, yの増減やグラフの凹凸は、次の表のようになる。 75004 1 0 関数のグラフの概形 次の1~6⑥ に注意してかく (2logx)'.x-(2log x)(x)' _ 2(1-logx) x² 1 + 0+fx + : + + e+ y'=0 とするとx=e7 0 極小 変曲点 0 1 lim y=lim (log x)² = ∞ x→+0 x=1で極小値0をとる。 変曲点は,点(e, 1) である。 また, lim logx=-∞ であるから x→+0 x>0< | +- よって, 軸が漸近線である。 以上から, グラフは 〔図] SA ↑ 1 0 1 e (10gx) ≧0であるから、 グラフは y≧0の範囲に 存在する。 150 ズーム UP ←logx=1 から x=e 注意 増減表でよく用いら れる記法 x は下に凸で増加, は下に凸で減少、 は上に凸で増加 は上に凸で減少 を表す。 ま 関 左

回答募集中 回答数: 0
数学 高校生

この青で囲んだ部分のやつまじでどこから来たのかわかりません。どなたか教えてください

を 223 方 ワイ 増場 [2] a<1≤a+1 001のとき よって はx=1で最大となり M(a)=f(1)=4 次に2<α<3のとき, f(x)=f(a+1)とすると a³6a²+9a-a³ すなわ 2<a<3と5<√33/6に注意して 1.3.0.4+1 4+2² 1713! [3] 1≦a < のとき f(x)はx=αで最大となり 3a²-9a+4=0 _ −(−9) ± √ (−9)²—4•3•4 2.3 a= 9+√33 6 M(a)=f(a)=a³-6a²+9a 近いもの lid 以上から まちがた 9+√33 [4] ≦αのとき 6 f(x)はx=a+1 で最大となり M(a)=f(a+1)=α-3a²+4 u+1使える! [2]y 4 Q= [3]y [4] y 9+√33 a<0, 6 0≦a <1のとき M (α)=4 4F a+α+1)=3から 2 最大 9+√33 1≦a < 6 [3],[4] a≧3≦atlになる 9 土 O 1 3 a+1 9+√33 6 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき 3次関数のグラフは直線x=pに関して 対称ではないことに注意しよう。 上の解答のαの値を 133 6 最大1 2 3 '3 a a+1 a+1 I x ●最大 La+1 a+1 x のとき M (a)=a²-6a²+9a 指針の② [区間内に極大 となるxの値を含み, そ のxの値で最大] の場合 。 ≦a のとき M (a)=a²-3a²+4 指針の⑧ [区間で単調減 少で, 左端で最大] また は ⑩ [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 9+√33 ex= 指針の① [区間内に極小 となるxの値がある] の うち、 区間の右端で最大 の場合、 または指針のA [区間で単調増加で,右 [端で最大] の場合。 3次関数の グラフ f(+1) 設定しろ! 対称ではない 放物線 PICZ (線) 対称 i=212としてはダメ! ] なお、 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 357 dfl 最小値m(t) を求め 6章 3 最大値・最小値、方程式・不等式 ぐの E 委

回答募集中 回答数: 0
数学 高校生

場合分けの問題で、なぜ片方だけ=が あるのですか?わかる方お願いします🤲

00000 重要 例 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x+9x とする。 区間 a≦x≦a+1におけるf(x)の最大値を 求めよ。 「指針 この例題は、区間の幅が1 (一定)で,区間が動くタイプである。 まず, y=f(x)のグラフをかく。次に,区間 a≦x≦a+1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら、 区間の右端で最大。 ® 区間で単調減少なら、 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき, 極大となるxで最大。 ① 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。すなわち、 により場合分け。 f(a)/(a+1)となると① Max ① B A 最大 f'(x)=3x2-12x+9 =(x-1)(x-3) f'(x)=0 とすると k=1, 3 f(x) の増減表は次のようになる。 1 3 2- [拡大] 小 4. 0 f'(x) + f(x) > + 01 [1] [a+1 <1 すなわち α<0の [1] y とぎ 4F f(x)はx=g+1で最大となり M(a) =f(a+1) =(a+1)³-6(a+1)² +9(a+1) =a²³-3a²+4 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1 における最大値 M (α) は, 次 のようになる。 a M y=f(x) | 3 -最大 a+1 最大 3 または | 解答の場合分けの位置のイ メージ YA y=f(x) | 121131 a 01 Ca+1 a 3 a+11 <指針のA [区間で単調増 加で,右端で最大] の場 合。 [21] すなわち 0≦a <1のとき f(x)はx=1で最大となり M(a)=f(1)=4 次に, 2 <<3のとき, (a)=f(a+1) とすると a³-6a²+9a=a³-3a²+4 3a²-9a+4=0 ゆえに よって 検討 2-3 2<u <3と5<√33 <6に注意して 9+√33 のとき [3] 1≦a<- 6 f(x)はx=αで最大となり Q= M(a)=f(a)=a³-6a²+9a [4] 9+√33 αのとき 6 f(x)はx=a+1 で最大となり 以上から [2]y M(a)=f(a+1)=a³-3a²+4 -(-9) ± √(-9)²-4·3·4_9±√33 224 よ。 al 最大 [3]y+ 6 9+√33 6 [4]ya 最大 0 1. @ 3 a 05 1 9+√33 6 a<0, 0≦a <1のとき M (α) = 4 .9+√33 [1]≦a[k] [] 6 3 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき, 3次関数のグラフは直線x=に関して 対称ではないことに注意しよう。 「上の解答のαの値を a+(a+1) 2 =3から a+1 a a+1 指針C [区間内に極大 となるxの値を含み、そ のxの値で最大] の場合、 最大 aa+1 a+1 ―≦a のとき M (a)=α²-3a²+4 指針の区間で単調減 で、左端で最大] また ① [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 のとき M(α)=α²-6a²+9a <指針の① [区間内に極小 となるxの値がある ] [の うち、区間の右端で最大 の場合。 または指針の [区間で単調増加で、 右 で最大] の場合。 357 3次関数の グラフ 「対称ではない 放物線 (線)対称 6 a=1 としてはダメ! ] 2 なお, 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 f(x)=x-3x²-9x とする。 区間 t≦x≦t+2におけるf(x)の最小値m(t) を求め 2 最大値・最小値方程式・不等式

回答募集中 回答数: 0
数学 高校生

この解き方はなぜダメなんですか?

3 10 経路の問題— 右図のような格子状の街路がある. A点からB点まで最短距離で移 動する.図の格子点で,右へ行く確率は 1 点からB点まで行くとき, P点, Q点を通って行く確率をそれぞれ求め ただし, ひとつの方向しか行けない場合は確率1でその方向に進む.A よ. (類 中部大・工) A 経路1つ1つは同様に確からしくない この問題で注意することは 「ひとつの方向しか行けない場合(右図の○印の点)は確率1でその方向に 「進む」である. このため,経路の1つ1つは同様に確からしくならない. 例えば右図の R1 のように移動する確率は,○印の点を5回,それ以外の 点は(A を含めて) 4 回通るので,15×(1/2)" であり, R2 のように移動する Xが上端のときx+ X1Z LIC 4 do 1 y 2 YI これを用いて各点に到達する確率を書き こんでいくと右のようになるから、答えは P... - 2' 解答 下図の点X, Yに到達する確率がそれぞれx,yのとき, Zに到達する確率は, Y は右端でない点 1 12%,それ以外のとき 1/12 (x+y)である. Q... 35 128 確率は1°× (12) である。ここでは書きこみ方式(場合の数の O10 参照) で解いてみるが, 〇印の点を何回通るかを考えて計算してもよい。 必ずBに到達する 上側と右側がカベになっているので,必ずBに到達する. つまり,「Q を通っ てBに行く確率」 は 「Qを通る確率」 であり, QBは考える必要がない. 問題文に惑わされないよう にしよう. X 2 x Iz y 2 Y 1 16 1 8 1 4 A 6 32 4 16 上に行く確率は -00/00. 3 2 4 1 2 22 64 10 32 6 16 30/00 8 to (1+5) 1 4 10 演習題 (解答は p.52) 右の図のように東西に4本, 南北に6本の道があり,各区画 は正方形である.P,Qの二人はそれぞれA地点,B地点を同 時に同じ速さで出発し、 最短距離の道順を取ってB地点, A地 点に向かった. ただし, 2通りの進み方がある交差点では, そ 12/2 であるとする. P.QがC地点で れぞれの選び方の確率は 64 128 20 64 P 10 32 4 16 1 8 西 A Q 1 15 64 15 32 16 とする. 北 南 ●B 35 128 1(4-09114 C R1 出会う確率は(1) である.また, どこか途中で出会う確率は(2) である.. B R2 東 (北里大薬) P Q B B (2) は, 出会う地点をま ず求める。 図の対称性も 活用したい . 43

回答募集中 回答数: 0
数学 高校生

赤丸の部分の長さ(座標)はどうやって出すんですか?

00000 重要 例題284 座標空間における回転体の体積 (2) 空間内の3点O(0, 0, 0),A(1, 0, 0),B(1,1,0)を頂点とする三角形 OAB をx軸の周りに1回転させてできる円錐をVとする。円錐Vをy軸の周 りに回転させてできる立体の体積を求めよ。 〔大阪大〕 重要 283 指針 立体のようすがイメージしにくいので、断面積を考える。 Vの側面上の点を P(x,y,z),Q(x, 0, 0) とすると, △OPQはOQ=PQの直角二等辺三角形であるから 関係 式をx,y,zで表してVの側面の方程式を求める。 ②Vの平面y=tによる切り口は,右図のような曲線の一部 と直線x=1で囲まれた図形で, これをy軸の周りに1回転 させるから、題意の立体の平面y=tによる切断面はドーナ ツ状の図形になる (解答の図参照)。この図形の面積は (外側の円の面積) (内側の円の面積)・・・・・・・・ 解答 円錐Vの側面上の点をP(x, y, z) (0≦x≦1, y|≦1) とする。 A 0 円 V上の点Pと点Q(x, 0, 0)の距離はxであるから③ (x-x)2+y2+z^=x2 よって x2-2²=y2(0≦x≦1) ZA 円錐Vの平面y=t(-1≦t≦1) によ る切り口は, 曲線 C: x²-22=12 (0≦x≦1) と直線x=1で囲まれた図 形となる。 点(0, 0) , この図形内の点との 距離の最大値は √1²+(√1-t²)² = √2-1² |t| √1-12 (0, t,0) 最大 \/c It 1 x 小 最小値は したがって, 円錐Vをy軸の周りに1回転させてできた立体の、 平面y=tによる切断面は右の図のようになる。 この図形の面積は π(√2-1²) ²-n|t|²=2(1-t²)π よって 求める立体の体積は S_,2(1-12)zdt=-2x$_,(t+1)(t-1)dt 8 = -2x - (-). (1-(-1))³= - - 7 =-2π・ 3 [参考] 対称性を利用して, 21 2 (1-t)rdt を計算してもよい。 p"+e=" 1 B AZ -X- Q(x,00 √2-12 -||- (0, t,0) P(x,y,z) A 一母線 √2-1² -√2-t²-t X 'B √√2-12 sysloga 75 76th 461 8章 40 体 積

回答募集中 回答数: 0
数学 高校生

赤丸の部分の長さ(座標)はどうやって出すんですか?

00000 重要 例題284 座標空間における回転体の体積 (2) 空間内の3点O(0, 0, 0),A(1, 0, 0),B(1,1,0)を頂点とする三角形 OAB をx軸の周りに1回転させてできる円錐をVとする。円錐Vをy軸の周 りに回転させてできる立体の体積を求めよ。 〔大阪大〕 重要 283 指針 立体のようすがイメージしにくいので、断面積を考える。 Vの側面上の点を P(x,y,z),Q(x, 0, 0) とすると, △OPQはOQ=PQの直角二等辺三角形であるから 関係 式をx,y,zで表してVの側面の方程式を求める。 ②Vの平面y=tによる切り口は,右図のような曲線の一部 と直線x=1で囲まれた図形で, これをy軸の周りに1回転 させるから、題意の立体の平面y=tによる切断面はドーナ ツ状の図形になる (解答の図参照)。この図形の面積は (外側の円の面積) (内側の円の面積)・・・・・・・・ 解答 円錐Vの側面上の点をP(x, y, z) (0≦x≦1, y|≦1) とする。 A 0 円 V上の点Pと点Q(x, 0, 0)の距離はxであるから③ (x-x)2+y2+z^=x2 よって x2-2²=y2(0≦x≦1) ZA 円錐Vの平面y=t(-1≦t≦1) によ る切り口は, 曲線 C: x²-22=12 (0≦x≦1) と直線x=1で囲まれた図 形となる。 点(0, 0) , この図形内の点との 距離の最大値は √1²+(√1-t²)² = √2-1² |t| √1-12 (0, t,0) 最大 \/c It 1 x 小 最小値は したがって, 円錐Vをy軸の周りに1回転させてできた立体の、 平面y=tによる切断面は右の図のようになる。 この図形の面積は π(√2-1²) ²-n|t|²=2(1-t²)π よって 求める立体の体積は S_,2(1-12)zdt=-2x$_,(t+1)(t-1)dt 8 = -2x - (-). (1-(-1))³= - - 7 =-2π・ 3 [参考] 対称性を利用して, 21 2 (1-t)rdt を計算してもよい。 p"+e=" 1 B AZ -X- Q(x,00 √2-12 -||- (0, t,0) P(x,y,z) A 一母線 √2-1² -√2-t²-t X 'B √√2-12 sysloga 75 76th 461 8章 40 体 積

回答募集中 回答数: 0