学年

教科

質問の種類

数学 高校生

赤い丸で囲んであるところが全くわからないです…💦

重要 例題 232 媒介変数表示の曲線と面積 (2) 媒介変数tによって, x=2cost-cos2t, y=2sint-sin2t (0≦t≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 PALER CH CHART 解答 図から, 0≦t≦↑ では常に y≥0. また OLUTION 基本例題228 では,t の変化に伴ってxは常に増加 したが, この問題ではxの変化が単調でないとこ ろがある。 右の図のように、 t=0 のときの点をA, x座標が 最大となる点をB (t=to でx座標が最大になると する), t=π のときの点をCとする。 この問題では点Bを境目としてxが増加から減少 に変わり, x軸方向について見たときに曲線が往 復する区間がある。 したがって, 曲線 AB をy, 曲線 BC を とすると, 求める面積Sは CONTO S=Synx Synx と表される。・・・・・ 2008 y=2sint-sin2t=2sint-2sintcostanial =2sint(1-cost) よって, y=0 とすると 0≦t≦x から t=0, π 次に, x = 2cost-cos 2t から dx dt -=-2sint+2sin 2t =-2sint+2(2sintcost) =2sint(2cost-1) 0 <t<π において 1 FAVO dx - = 0 とすると, sint> 0 から dt 「 cost=- ゆえに π t=₁ よって、xの値の増減は右の表のようになる。 sint = 0 または cost=1+sajest 15 0<a Fachs C In t dx dt x よって,xの値の増減を調べ, x座標が最大となるときのtの値を求めてSの式 を立てる。また,定積分の計算は,置換積分法によりxの積分からの積分に直 して計算するとよい。 -3 t= を求めている。 y2 0 0 1 0000 y₁ 13 S 曲線が往復 している区間 (小 ... yA + 0 Hinf. 0≦t≦π のとき sint≧0,cost≦1 から y=2sint(1-cost) 20 としても,y≧0 がわかる。 0 A 1 t=0+ π 3 0 3 2 基本 228 *** •B TI [] t=to π 0 -3 ゆえに, osts におけるy をyi, sts におけるyを X=- 20030-caso =2-1 [ ] とすると, 求める面積Sは s=S²¸y=dx−Svidx ここで、0≦ osts において、 x=1のとき t=0, であるから また、において x=2のとき 一 であるから よって 3 x= のとき S² vidx=Sy dx ここで dt dt x=3のときt=" S²¸yzdx=Syddt t=7 s-Syndx-S² vndx-Syddi - Sydd dt dx -Sidedt + Sy dr dt-Sydx dt =S(2sint-sin2t)(−2sint+2sin2t)dt = S-2s -2sin22t+6sin2tsint-4sin't)dt =2f (sin2t-3sin2tsint+2sint)dt 4t sin 2t dt-S¹-cost dt-t-sin 4- ・dt=- 2 (3sin2tsintdt-3" 2 sint cost-sintdt EES S2 sintdt=2^1-69824dt=[1-1/2 sin24] 月 sin'tdt=2f"1-cos2tat=| =1 S= = -65 sint cost dt = 65" sinºt(sint)dt = 6-sin't] =0 =6 Y -3 注意 と は,xの式と しては異なるから |Sydx-vidx=S_¸ydx としてはいけない。 一方の式としては同じ y=2sint-sin2t) で表さ れる。 355 Sf(x) dx = -f(x) dx Sf(x) dx + f(x) dx -Sof(x)dx ← S₁ƒ (x) dx = -S₁ƒ (x) dx 1-cos 20 2 inf. 積和の公式から 3sin2tsintdt sin'0= ---√ (cos (cos 3t-cost)dt -sin 3t- =0 したがってS203 としてもよい。 [inf. この例題の曲線は, カージオイドの一部分である(p.103 補足参照)。 Tri y PRACTICE・・・・ 232 ④ 媒介変数tによって, x=2t+t, y=t+212 (-2≦t≦0) と表される曲線と, y軸で 囲まれた図形の面積Sを求めよ。 ds de 8章 25 20

回答募集中 回答数: 0
数学 高校生

マーカーの部分を詳しく教えてください🙏

福祉大] 基本16 項は wak k 日本 例題18 次の数列の和を求めよ。 CHART 第k項に 第k項を含む数列の和 1.(n+1), 2∙n, 3.(n-1), & THINKING を含む数列の和の計算 まず第k項(一般項)、次に和の公式 n 口は1, 2, 3, ......, n-1, n ○はn+1,n,n-1, ......, 3,2 n 基本例題17と同様, 各項は□〇の形。 □〇を分けて考え、それぞれの項をkの 式で表そう。 ......., (n-1)3.7.2 k=1 この数列の第k項は k{(n+1)+(k-1)·(−1)}=−k²+(n+2)k したがって、求める和をSとすると →第k項はん 初項n+1の等差数列である。 第k項はんを用いてどう表せるだろうか? と○を掛けたものが、与えられた数列の一般項 α となる。 項数は口の数列からとわかる。 S={-k²+(n+2)k}=-2x+(n+2) 2k k=1 −−— n(n+1)(2n+1)+(n+2) • ½{/n(n+1) == +(1+2+………+n) n -22 (1+2+k+1/12 (+1) k) = k=1 30.1 = n(n+1){-(2n+1)+3(n+2)} 6 = n(n+1)(n+5) 別解 求める和をSとすると S=1+(1+2)+(1+2+3)+......+(1+2+………‥+n) 00000 = 2/k(k+1) + n(n+1) 2 = 6 基本17 379 {}の中は、初項 n + 1, 公差-1の等差数列の 一般項。 n+2はに無関係 → 定数とみて、Σの 前に出す。 1歳 1m(+1)でくくり。 {}の中に分数がでて こないようにする。 +) 1-(n+1) ← 1+1+1+ ··..... +1+1 2+2+ ...... +2+2 ·+······ +3+3 n+n は、これを縦の列ご = 12/12/12 (k² + k) + ₁ + 1 1/2 n(n+1) == 1/2/ ②+2+n(n+1)} とに加えたもの。 2k=1 2k=1 k=1 =12/11n(n+1)(2n+1)+1/n(n+1)+n(n+1)} -1.0/n(n+1)(2n+1)+3+6/11/2m(+1+5 3 種々の数列

回答募集中 回答数: 0
数学 高校生

この問題を教えてください🙏 考察1から3までよろしくお願いします🙇‍♀️

y=-4, を利用した数列の和の求め方 20ページでは、 21 「差の形」 に kを求めるときに(k+1)-kという 着目した等式を利用した。また、26ページの例題8において、 (+1) 1/14 & k を求めるときにも, 「差の形」に着目した等式 利用した。 72 一般に, 数列の和 20g について k】 H ak = Ak÷1¬Ak となる数列{A} を求めることができれば 20k=Ah+1-A1 が成り立ち、その和を求めることができる。 視点 1 k(k+1) 72 22 + ·) a (2) (1)を利用して、kを求めてみよう。 1 k+Ⅰ これまで学んだ様々な数列の和についても、この方法で和を求めるこ とはできないだろうか。 92 13ページでは, 等差数列の和の公式の特別な場合としてkを求めた。 この和を「差の形」 を利用して求めることはできないだろうか。 A Az Ax-i-Az A₁ Žax = Anti 考察1 (1) 46=1/12 (k-1)kについて,等式k=Asto-A が成り立つこと を確認してみよう。 22ページの例21で求めた 2k(k+1) についても考えてみよう。 考察2 (1) k(k+1)=Bk+i-B を満たす数列{B}を求めてみよう。 (2)(1) を利用して (+1) を求めてみよう。 (1) (k + 2) も 考察 1 や考察2と同様の方法で求められないだろ うか。また、2k 2k(k+1)(k+2)(k+3) はどうだろうか。

回答募集中 回答数: 0
数学 高校生

3番の問題は和の公式を使わなければ場合分けはしなくて良いのですか?

(2) 初項が2,公比が 3, 和が242である等比数列の項数を求めよ。 (1) 公比が3,初項から第6項までの和が728 の等比数列の初項を求めよ。 和をSとすると, S3 = 3, S6=27 であった。 このときa, rの値を求めよ。 [(3) 大阪工大] p.365 基本事項 3 基本11 (3) 初項a,公比rがともに実数の等比数列について,初項から第n項までの CHART & SOLUTION 等比数列の決定 まず初項 αと公比r (3) の値が与えられていないので, 和の公式を使うとき,r=1 と r≠1 に分けて考える (1),(2),(3) 和が与えられた問題では, 項数nについても考える。 必要がある。 開 (1) 初項をaとすると,条件から よって, α(1-729)=4・728 から r≠1のとき, S3=3 から a{1-(−3)} 1-(-3)。 (2) 項数をnとすると,条件から ゆえに 3-1=242 したがって, 項数は n=5 (3) r=1のとき S3=3a, S6=6a 3a=3,6a=27 を同時に満たすαは存在しないから不適。 3101534 PRACT LEDS a=-4 2(3-1) 3-1 a = すなわち a(r³--1) r-1 -=728 -=242 =3 .P¶ "(x + a(rº_1)__LA また, S6=27 から = 27 19 7-1-17 E r°−1=(r3)2−1=(n-1)(n+1) であるから、②より 3"=35 „§ (= a(r³−1).(√³+1)=27 r-1 これに ① を代入すると 3 (3+1)=27で解くと、 よって r3=8 rは実数であるから 3 r=2, ① から 7 ...... (1) 公比 - 3 項数 n=6の等比数列の和が 728 である。 Sn=a(²-1) r-1 ← 243 = 35 等比数列の和の公式を 使うときは,まず,公比 rが1であるかどうか を調べる。 St. a(³-1) r-1 369 の 17a=3 -·(³+1)=27 に3を代入。

回答募集中 回答数: 0