学年

教科

質問の種類

数学 高校生

(2)の場合わけで符号にイコールが付いているときとついてないときの違いはどこですか?

90 基本例 例題 119 絶対値を含む不等式の表す領域 00000 次の不等式の表す領域を図示せよ。 (1)|x+2y|≦6 (2)|x|+|y+1|≦20基本 指針 絶対値 場合に分けるに従い, 記号 | |をはずす。 ① A≧0 のとき |A| =A ② A<0 のとき |A|=-A そのままはずす - をつけてはずす (1)|≦正の数の特別な形なので、次のことを利用すると早い。 c0 のとき |x|≦cc≦x≦c (2)上の①,②を利用して場合分け。 場合分けのポイントとなるのは||内の式 となるとき。ここでは, x, y+1の符号によって4通りの場合に分ける。 (1)x+2y|≦6から -6≤x+2y≤6 (1)では, 場合分けをせず ||をはずすこと 12x-3ができる。 LOST 解答 14 よって -6≤x+2y - すなわち x+2y=6 A 1 - 12x+3× 求める領域は,下図 (1) の斜線部分。 ただし, 境界線を含 「不等式y≧x-3の む。 (2) [1] x≧0, y≧-1のとき 「表す領域」 と 「不等式 x+y+1≦2 すなわちy-x+1 [2] x≧0,y<-1のとき x-(y+1)≦2 y≤- -x+3の表す領 「域」 の共通部分。 すなわち y≧x-3. -x+y+1≦2 [3] x<0,y-1のとき [4] x< 0, y<1のとき -x-(y+1)≦2 すなわち y=-x-3 すなわち y≦x+1 求める領域は,下図 (2) の斜線部分。 ただし,境界線を含[1] [2] [3] [4] の場 む。 (2) 13 -2 12 3x 合の領域を合わせたもの が、求める領域となる。 [1] の場合の領域は次の ようになる -6 -3 Ay 境界線を含む 12 O

回答募集中 回答数: 0
数学 高校生

数学Iについて (2)"h(x)の最大値が0より大きくなる"部分のところがわかりません。なぜ最小値ではなく最大値なのでしょうか?

166 第2章 2次関数 SE **** 例題 88 2つの放物線の位置関係 2≦x≦2 の範囲で、関数f(x)=x2+2x-2,g(x)=-x2+2x+a+1 について、次の条件を満たすような定数αの値の範囲をそれぞれ求めよ。 (1) すべてのxに対して、f(x)<g(x) (2) あるxに対して,f(x)<g(x) (3) すべての組 x1, x2 に対して,f(x)<g(x2) (4) ある組X1,X2に対して、f(x)<g(x2) グラフをかいて, f(x) と g(x)の位置関係をイメージする.また,「すべて」 と 「ある」 [考え方] については,第3章 「集合と命題」で詳しく解説している。 (1)と(2)(x)(x)に同じxの値を代入したときの大小を比較している. (2)−2≦x≦2 の範囲で xx (1)−2≦x≦2 の範囲のどのxの値に対 しても、つねにxg(x) であ) を満たすxの値が存在することと、 ることと,この区間で,y=g(x)の この区間で,y=g(x)のグラフが 1) グラフが y=f(x)のグラフより y=f(x)のグラフより上側になる 部分がどこかにあることは同じ、 ねに上側にあることは同じ. 24842y=f(x) y 12 y=g(x)\ y=f(x) y4 O X f(x)<g(x)1 y=g(x) h(x)=g(x)-f(x) とおくと, (1) は, −2≦x≦2 の範囲のどのようなxの値でも f(x)<g(x),つまり,h(x)>0であることが条件である。 (2)は,-2≦x≦2 の範囲で, f(x) <g(x),つまり、(x)>0 となるxの値が存在する ことが条件である。 解答 h(x)=g(x)f(x)とおくと、 h(x)=(-x2+2x+α+1)(x2+2x-2) =-2x2+a+3 (1) 2≦x≦2のすべてのxに対して, h(x)>0 となる 条件は,この区間におけるh(x) の最小値が0より大き くなることである. h(x)>0 のとき, g(x) f(x) つまり g(x)はf(x)の上側. y=h(x)のグラフは,上に凸で,軸が直線 x=0 で あるから,x=-2 と x=2で最小値をとる. YA y=h(x) よって, より,α-50 つまり h(-2)=-2・(-2)^+α+3=α-5 ん(2)=-2.22+α+3=α-5 (2)2x2のあるxに対して, h(x)>0 となる条件 は、この区間におけるh(x) の最大値が0より大きくな ゑことである. y=h(x) のグラフは上に凸で,軸がx=0 より, x=0で最大値をとる。 最小 最小 A IV a>5 -20 2 x α+3] 最大 y=h(x) 10 x よって, h(0)=α+3>0 より a>-3 考え方 (3) (4)に -24x (3)- の y=f( (4) 解答

回答募集中 回答数: 0
数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

直線束の考え方がよく分かりません 87ページの内容を説明して頂きたいです😭 その上で、例題13も説明して頂きたいです

束の考え方 1つの共有点をもつような2つの直線 ax+by+c=0 ax+by+c=0 ...... ② 87 があるとします.ここで、①の式に②の式をを倍して足した新しい式 (ax+by+c)+k(a'x + b'y + c') = 0 を作ってみましょう.これもやはり直線の方程式になります。 ③の式から②の 式のk倍を引き算すれば① の式が作れるのですから, 「①と②」の式と「②と ③」 の式は同値です。つまり、図形的に見れば、 ①と②の2直線の交点と②と ③の2直線の交点は一致することになります。 一致する * このことより, ③は(kの値によらず) ①と②の交点を通る直線である ということがいえます. ③において, kの値をいろ いろと変化させてできる直線の集まりは一点で結わ れた直線の束に見えるので,直線束と呼ばれていま す. これを利用すると, 2直線の交点を通る直線を 実際に交点を求めることなく扱うことができるので とても便利です。 コメント んの値が動くと 直線が動く 直線束 第3章 この束には、②の直線は含まれません,これは, 「同値関係」を考えてみれ ばわかります. もし③が② に一致するならば, 「③と②の共有点の集合」は直 線 ②全体になってしまいますが,「①と②の共有点の集合」 は1点ですので、 同値であることに矛盾してしまうのです. 一方, ②の直線上にない点を (p,g) とすると,ap + b'y + c'≠0 ですので,③が(p, q) を通るようなkの 値を決めることができます (③ に (p, g) を代入したものはんの1次方程式にな るので,それを解けばいいのです) つまり,③は 「①と②の交点を通る ②以 「外のすべての直線」 を表せることがわかります.

回答募集中 回答数: 0