学年

教科

質問の種類

数学 高校生

この問題の解き方を教えてください (2)の【4】がよく分からないです あとこの場合分けの考え方も教えてください

三角方程式の解の個数 重要 例題 126 aは定数とする。 0≦0 <2πのとき, 方程式 sin' - sin0 = a について 150g (1) この方程式が解をもつためのαのとりうる値の範囲を求めよ。 (2) この方程式の解の個数をαの値によって場合分けして求めよ。 CHART & SOLUTION 方程式f(0)=a の解 2つのグラフy=f(0),y=a の共有点 sin0=k(0≦0<2π)の解の個数 k=±1 で場合分け 期間① の個数はk=±1 のとき1個; −1 <k<1のとき2個;k<-1,1<k のとき0個 150 解答 (1) sin²0-sin0=a sin0=t とおくと ② ただし、0≦0 <2π から 01≦t≦1...... ③ したがって, 方程式 ① が解をもつための条件は, 方程式 ②③ の範囲の解をもつことである。 1-aduh TOL200 250 x>020 (1) £0) ①とする。 t²-t=a 0 方程式②の実数解は、y=-1=(1-212)-1/24 [2]+ の [3] グラフと直線y=α の共有点のt座標であるから, [4]- [5] 右の図より -sas2 a≤2 seas ttt0=p1200mia ⑩ (2) (1) の2つの関数のグラフの共有点のt座標に注目すると 方程式 ① の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t = -1 から 1個 [2] 0<a<2のとき, -1<< 0 から 2個 [4] ~ [3] α=0 のとき, t = 0, 1 から 3個 [4] [4] -1/ <a<0のとき,0<t</12/12/3 [1]- 1/12/2<1 <t<1 a <1/12 <a のとき a<-₁ [2] 2 の範囲に共有点がそれぞれ1個ずつあり,そ [1] れぞれ2個ずつの解をもつから 4個 [5] a=-21 のとき, t=1/12 から 2個 [6] 10個 10 -1 基本125 YA) 2 1 021 π y=a *** aor aor 2πi 0 t=sin 0 205 -[3] -[5] - [3] 4€ 16

回答募集中 回答数: 0
数学 高校生

cosθ-1=0になる理由がわかりません...

2 の値が におく。 する 。 あるか = √9 おく して 辺を 基本例題150 三角方程式・不等式の解法 (3) ・・・ 倍角の公式 0≦0<2πのとき、次の方程式,不等式を解け。 (1) sin26=cose 指針 解答 (1) 方程式から 2sinAcos0=cos0 ゆえに 2倍角の公式 sin20=2sinocoso, cos 20=1-2sin'0=2cos²0-1 を用いて, 関数の種類と角を0に統一する。 ② 因数分解して, (1) なら AB = 0, (2) なら AB ≧0の形に変形する。 ③ -1≦sin 0≦1,-1≦cos 0 ≦1に注意 して, 方程式・不等式を解く。 CHART 020が混在した式 倍角の公式で角を統一する cos (2sin0-1)=00 cos0=0, sin0= よって 0≦0 <2πであるから COS6=0 より sin0 == より 9 = 2/1/21* 以上から,解は 0= 0= 0= 兀 3 2' 2 5 6'6 π よって したがって,解は 0=0, 11 (2) 不等式から 整理すると ゆえに 0≦0<2πでは, cos 0-1≦0 であるから TC TC π 5 π, 6'2 6 2 2cos20-1-3cos0+2≧0 π π cos 0-1=0, 2 cos 0-1≤0 cos0=1,cos0≦ -≤0≤. 1 2cos20-3cos 0+1≧0 (cos 0-1)(2cos 0-1)≧0 5 3 (2) cos 20-3 cos0+2≧0 2 1 2 π π 2942 2 YA 1 0 -1 1 ON -1 6 voles 5 1 x 11 2 AND x 基本149 sin20=2sin Acos A 種類の統一はできないが, 積=0 の形になるので、解 決できる。 AB=0⇔ A = 0 またはB=0 sin0= -1/23の参考図。 cos 0 = 0 程度は図がなく しても導けるように。 cos 20=2cos20-1 235 cos 0-1=0 を忘れないよ うに注意。 今号の参 なお,図は cost≦ 考図。 4章 25 加法定理の応用

回答募集中 回答数: 0