学年

教科

質問の種類

数学 高校生

どこで計算ミスしているか教えてください💦

18 重要 例題 5 やや複雑なくじ引きの確率 00000 当たり3本はずれ 7本のくじをA,B2人が引く。 ただし, 引いたくじは もとに戻さないものとする。 まずAが1本引き, はずれたときだけAがもう1本引く。次にBが1本引き、 はずれたときだけBがもう1本引く。 このとき, A, B が当たりくじを引く ミス 確率 P(A),P(B) をそれぞれ求めよ。 NG CHART SOLUTION [類 大阪女子大 ] 基本 52 重要 3つ 玉が ある この 311 (1) (2) 複雑な事象の確率 排反な事象に分解する Bが当たりくじを引くには [1] Aが1回目で当たり,Bが1回目か2回目に当たる。 [2] Aが1回目ははずれて,2回目で当たり,Bが1回目か2回目に当たる。 [3] Aが1回目も2回目もはずれて、Bが1回目か2回目に当たる。 の3つの場合がある。 本問のように複雑な事象については,変化のようすを 樹形図で整理し、樹形図に 確率を書き添えると考えやすい。 CHZ 解答 3 Aが1回目で当たりを引く事象の確率は 10 Aが1回目ではずれを引き 2回目で当たりを引く事象の確率は 7 3 17 10 9 30 × これらの事象は互いに排反であるから 3 7 16 8 P(A)=- + 10 30 30 15 解 箱A 解玉1 (1) 玉を (2) (8)(A 当たるときを〇 はずれ るときを×とすると A B Bが当たりくじを引くには,次の3つの場合がある。 [1] Aが1回目で当たり,Bが1回目か2回目に当たる [1] [2] Aが1回目ではずれて 2回目で当たり,Bが1回目か2 回目に当たる 032 2-8 7-9 98 2-9 ( BO 10 P(B)= + + 3/2 72 7 32 6 20 10\9 98 10 9 8 [3] Aが2回ともはずれて,Bが1回目か2回目に当たる [2] xO- [1], [2], [3] の各事象は互いに排反であるから 2-8 73 6-8 2-7 10 9 . + • 8 7 8 ( 7 6/3 + • • 10 9 8 53 87 = 18 13 3 [3] xx -+ 8 + = 76 120 800 3-7 10 15 10 9

解決済み 回答数: 1
数学 高校生

この問題の⑵で、P Qがsinαだから2/√5となるところが分かりません。 教えてください  お願いします🙇‍♂️🙇‍♂️🙇‍♂️🙇‍♂️🙇‍♂️

標問 35 (2) 三角関数の最大最小 図において, OA, OB は半径1の円の互いに垂直な 2つの半径, PQ は BO に平行で, 四角形 PQQ'P' は 正方形である.図の斜線部分の面積をSとするとき, 次の問いに答えよ. (1) ∠POQ=0 (2) Sが最大となるときのPQの長さを求めよ. →精講 を導いたら (i)前問のように 1/12 cos20 +sin20 を合成す るか,または (ⅱ) 倍角公式を使って 1/12 cos2012/2= と変形して S' (8) を因数分解します. (ii) の場合, tan 0 が現れるように ds -=sin cos 0(2-tan) de = (0<0<) とおいて,Sを0で表せ. = ds do (2) (1) まとめ方にもよりますが ds =1/12 cos20 + sin20-12 do とすれば符号の変化が調べやすくなります。 ただし, tan0=2 を満たす角はわからないの で 0=α などとおくことになります。 解答では, (ii)の方法を選択することにします. 4303 1 2 (1) S=(三角形OQP) + (正方形 QQ'P'P) - (扇形 OAP) 1 sinocos0 + sino-120 2 1 -sin20+ sin20- =1/(1- 2 20-12/20 -cos20+2sin Acoso- -sin20 解答 2 (85) 1 1 2 -(1-2 sin²0)+2 sin cos 0- 2 B 8 P 解法のプロセス dS do Q を計算 A 83 (岡山大) ↓ 合成 tan 0 が現れるように因数分解 わからない角は適当において増 減を調べる

解決済み 回答数: 1
数学 高校生

導関数の最大最小の問題です 最後の最大最小のまとめ方がなぜこうなっているのかが分かりません。x=2で最小値-4などはどこから来たのでしょうか。 教えて頂きたいのです よろしくお願いします🙇‍♀️

416 例題 234 関数の最大・最小〔5〕・・・係数に文字を含む よびそのときのxの値を求めよ。 a>0とする関数f(x)=x-3ax 0≦x≦3) の最大値と最小値, お 思考プロセス Re Action 関数の最大・最小は, 極値と端点での値を調べよ 例題228 f'(x)=3x-6ax=3x(x-2a) であり aの値が大きくなるとき, グラフ全体が平行移動するのではなく, 極小値をとるx (2a) が右側へ動いていく。 問題を分ける 最大値と最小値を同時に考えるのは難しいから, 分けて考える。 (極小となる点を 区間に含む 最小値 最大値 x f'(x) + f(x) > 0 0 極小となる点を 区間に含まない / ・・・・・ (最小値)=(極小値) /区間の両端での 値の大小を考える f'(x)=3x²2-6ax=3x(x-2a) f'(x) = 0 とすると x=0, 2a よって, f(x) の増減表は次のようになる。 YA 0 2a 0 + -4a³7 ゆえに,y=f(x)のグラフは右の図。 最小値について (ア) 3 <2a すなわちa> f(x)はx=3のとき 最小値 27-27a - f(x) は x = 24 のとき 最小値-4 3 12/2のとき 3 (イ) 20≦3 すなわちaso2 のとき *** /区間の両端での 値の大小を考える 境界となる 両端の値が等しいときを考える 0 U 0 -4a³ 2a x 2a 3 D YA O 2a N dara 2a a>0 より 2 > 0 S 極小となるx = 24 を区 間 0≦x≦3に含むかど うかで場合分けする。 3 245 = (- 次に, 最大値について f(x)=f(0) となるxの値は x-3ax² = 0 より x2(x-3a) = 0 よって (ア) 3 <3a すなわちa>1 のとき f(x)はx=0のとき 最大値 0 x = 0, 3a (イ) 3a = 3 すなわちα=1のとき f(x) は x = 0, 3のとき 最大値 0 (ウ) 34 <3 すなわちa <1のとき f(x)はx=3のとき 最大値 27-27a a=1のとき 1<a ≤ 3 2 3 2 R O <a のとき -4a³ ------ 0 3a 0 3a3 以上より, f(x) の最大値と最小値,およびそのときのxの 値は ( 8 (0<a<1のとき 2a のとき x=0で最大値 0 x 3.3g 3 x=3 で最大値 27-27a x=2で最小値-4c x = 0, 3 で最大値 0 x=2で最小値 4 x=2αで最小値-4α x=0で最大値 0 x=3で最小値 27-27a 最大値となり得る極大値 f (0) = 0 と等しい値をと るxの値を求める。 p.407 Go Ahead 16 の内 容を用いて, x = 3g を確 認できる。 (Svarar 1 aaa 0 2a 3a x=3g を区間0x3 に含むかどうかで場合分 けする。 (ア) (イ) の最大値は一致 するが、 最大値をとるx の値が異なるから, 分け て考える。 分かりやすいように, 最 後に, 最大値と最小値を まとめる。 Point... 定数を含む関数の最大・最小・ 例題234 において、 場合分けを考えるとき, 固定された区間 0≦x≦3に対して, グラ フを x = 24 や x=3α に着目し伸縮させて考 えた。 (最小値) (ア) 見方を変える 右の図のように、グラフを固定して,区間の端 点x=3を相対的に動かしても考えやすい。 (イ) (最大値) (ア)(イ) (ウ) HUN 0 32a 0 3 3a3 5章 14 導関数の応用 練習 234a>0とする。 関数 f(x)=x-342x (0 ≦x≦1) の最大値と最小値, およ びそのときのxの値を求めよ。 p.430 問題234 41

回答募集中 回答数: 0