学年

教科

質問の種類

数学 高校生

数A 確率 下の写真についてです。 この問題のイ、全くわかりません。なんの目的でk+1とkを比較しようとしているのかも、何をしようとしているのかも理解できませんでした。 解説していただきたいです。よろしくお願いします

重要 例題 56 独立な試行の確率の最大 383 00000 さいころを続けて100回投げるとき 1の目がちょうどk回 (0≦k≦100) 出る確 率は 100 Ck ×・ 6100 でありこの確率が最大になるのはk=1のときである [慶応大) 基本49 指針▷ (ア) 求める確率を とする。 1の目が回出るということは,他の目が100k回出ると いうことである。 反復試行の確率の公式に当てはめればよい。 (イ) +1 差をとることが多い。しか の大小を比較する。大小の比較をするときは, が多く出てくることから、 比 し確率は負の値をとらないことと "Cr= Ph+1 pk n! r!(n-r)! をとり、1との大小を比べるとよい。 を使うため、式の中に累乗や階乗 11 CHART 確率の大小比較 比 pk+1 をとり、1との大小を比べる pk 章 8 独立な試行・反復試行の確率 2章 解答 さいころを100回投げるとき 1の目がちょうどk回出る確率 5 100-k 75100- とすると =100CkX 反復試行の確率。 6100 Pk+1 100!5% k!(100-k)! 5:00(+1) ここで pk (k+1)! (99-k)! 100! 5100-k 1+1=100C (+) X 6100 100-k pakの代わりに 5(k+1) k+1 <1 とすると 100-k k+1とする。 また、 <1 pk 5(k+1) 両辺に 5(k+1) [>0] を掛けて 100-k<5(k+1) 95 これを解くと k> ·=15.8··· 59 500 === (k+1)!=(k+1) k! に注意。 両辺に正の数を掛けるから, 不等号の向きは変わらない。 6 よって, k≧16のとき pk>Pk+1 1 pk+11とすると kは 0≦k≦100 を満たす整 数である。 100-k>5(k+1) pk 95 これを解くと k<=15.8... Daの大きさを棒で表すと |最大 よって, 0≦k≦15のとき D<Dk+1 増加 したがって Po<i<<P15<P16, P16>1>>P100 2012 100 k よって, か が最大になるのはk= 16のときである。 17 99

回答募集中 回答数: 0
数学 高校生

極限の問題で初項0の場合を考えていないのですが、なぜ考えなくて良いのか教えて頂きたいです。

練習 次の数列が収束するように,実数xの値の範囲を定めよ。 また, そのときの数列の極限値を求め よ。 ②94 (1) (1) 収束するための条件は -1</1/23x1 x≦1 3 これを解いて 2 2 -x=1 となるのは,x= また,Aで (2) {(x2-4x)"} 3 2 <x≤. よって x2-4x≦1から x2-4x-1≦0 数列の極限値は (2) 収束するための条件は -1<x²-4x≦1 -1<x²-4x から x ²-4x+1>0 x2-4x+1=0の解は x=2±√3 x<2-√3, 2+√3 <x よって 3 3 012/21<x<12/2のとき0.x=12/2のとき A 掛けて -(x2-x+2)<x2+2x-5から ゆえに (2x+3)(x-1)>0 13 x- ...... HINT 数列{rn} の収束 条件は -1<r≦1 また,極限値は 8) mil=>-1<r<15 0₂ のときであるからなら1② x2-4x-1=0の解は x=2±√5 よって 2-√5 ≦x≦2+√5 2 ゆえに,収束するときの実数xの値の範囲は, ① かつ② から 02-√5 ≦x<2-√3, 2+√3<x≦2+√5 (3) {(x²-x+2 また、Aでx2-4x=1 となるのは、x=2±√5のときであるか ら、 数列の極限値は 映画 2-√5<x<2-√3, 2+√3 <x<2+√5のとき0; x=2±√5のとき1 (3) 収束するための条件は-1<x+2 3, 1<x 2' x2+2x-5\" x-x+2=(x-1/12 ) 2+1/17/>0であるから、各辺にポーx+2 を -(x²-x+2)<x²+2x-55x²-x+2+1 mil ( x2+2x-5 ≤1..... (A) x2+2x-5≦x2-x+2から 3x≦7 よってx≦- 7 AT D ←-1<x<1のときと r=1のときで数列{r"} の極限値が異なることに 注意。 (2) TER ae 2-√5 2-√3 x=0の場合 考えなくて♪ 2+√3 2+√5 2x2+x-30 ことになるから,不等号 の向きは変わらない。 MAA ←各辺に正の数を掛ける 4i 練 MJ

回答募集中 回答数: 0
数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

186. このような記述でも問題ないですよね? またこの類の問題ではほとんどの場合互いに素を用いるように思うので、互いに素を使いたい、そして有理数の性質(m/nでm,nは整数でn≠0)よりこのような証明方法になるということですよね? また、有理数であることを仮定してから、「... 続きを読む

演習 例題186 指数方程式の有理数解 (1) 3*=5 を満たす xは無理数であることを示せ。 (②2) 35-2y=53-6 を満たす有理数x,yを求めよ。 m (m,nは整数,n≠0) と表される数を有理数といい, 有理数でない n 指針 実数において, ものを無理数 という。 (1) 無理数であることの証明では, 有理数であると仮定して, 矛盾を導く (背理法)。 (2) 方程式1つに変数がx,yの2つ。 有理数という条件で解くから, (1) が利用できそう。 底が3,5であるから, 3' =5 [(1)] の形にはならないことを用いる。 解答 (1) 3=5を満たすxはただ1つ存在する。 そのxが有理数であると仮定すると, 3*=5>1 であるから m CHART 無理数であることの証明 (有理数) とおいて、 (1) n 背理法 事柄が成り立たないと仮定し て矛盾を導き, それによって m x>0で,x=- (m,n は正の整数)と表される。 =(a+事柄が成り立つとする証明法 (数学Ⅰ)。 n m 37=5 よって 両辺をn乗すると 3m=5n ① ここで,①の左辺は3の倍数であり,右辺は3の倍数ではな いから,矛盾。 よって, xは有理数ではないから、無理数である。… 3x-y+6=5x+2y (2)等式から 2) spol x+2y=0 と仮定すると, ② から x-y+6 3x+2y = 5 練習 ③ 186 x,yを有理数とすると, x-y+6, x+2y はともに有理数で x-y+6 x+2y ...... ゆえに このとき, ② から よって x-y+6=0 ④,⑤を連立して解くと も有理数となり, (1) により③は成り立たない Gram x+2y=0 000 3x-y+6=1 基本 167 x=-4, y=2 等式 20x10y+1 を満たす有理数x,yを求めよ。 3と5は1以外の公約数を もたない。 このとき,3と 5は互いに素 という。 3÷36=5÷5-2y 3x-(y-6)=5x-(-2y) ②から3-y+6)x+2y X = (5x+2y)x+2y (1) で3'=5を満たすは 無理数であることを証明し ている。 KH ④: x+2y=0 と仮定して, 矛盾が生じたから, x+2y=0 である。」< 40 T810 Op.294 EX120 53

回答募集中 回答数: 0
数学 高校生

182.2 k≦log10 N<k+1なので「ゆえに...」の部分を丁寧に書くと、 38.905≦log10 6^50<39より、38<log10 6^50<39であり、38.905≦log10 6^50<39の部分を解答では省略しているのですか? (38.905≦log1... 続きを読む

N<k logN<- 示し る。 基本例題 182 常用対数を利用した桁数, 小数首位の判断 ①①①①① logio2=0.3010, log103=0.4771 とする。 (1) 10g105, 10g100.006, logio√/72 の値をそれぞれ求めよ。 (2) 650 は何桁の整数か。 る。 1 / 2 \100 3 (3) HHOTTOMNE 指針 (1) 10 で, 10g10 2, 10g103 の値が与えられているから,各対数の真数を2,3, 10の累 乗の積で表してみる。 なお, 10g105の5は5=10÷2 と考える。 (2),(3) まず, 10g106% 10g10 を求める。 別解 あり 解答編p.181 検討 参照。 解答 を小数で表すと, 小数第何位に初めて0でない数字が現れるか。 scusa 01 p. 284, 2 「正の数Nの整数部分が桁⇔k-1≦loguN <k 正の数Nは小数第位に初めて0でない数字が現れる⇔-k≦1010N 【CHART 桁数,小数首位の問題 常用対数をとる 10 log. (1) 10g105=10g10=10g1010-logio2=1-0.3010=0.6990 logad = 10g100.006=10gio (2・3・10-3)=10g102+ 10g103-310g1010 = 0.3010+0.4771-3=-2.2219 ******** ゆえに logiu√72=10g10(23.32) 11 (310g102+210g103) 2 TOOTH ( 3×0.3010+2×0.4771) = 0.9286 (2)10g106505010g106=5010g10 (2・3)=50(10g102+10g103) 練習 ② 182 2\100 3 =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10650 <39 よって 1038 <650 <1039 したがって, 650 は 39 桁の整数である。 (3) logi()100- =100(10g102-10g103)=100(0.3010-0.4771) 3 =-17.61 -18 <10g10 10-18< 100 2 <-17 <-k+1 3388520T AT 383 ROKS <10-17 10g1010=1 [重要] 10g15=1-10g102 この変形はよく用いられる。 1√Ã= A ² 53.0 ならば, Nの整数部分は (k+1) 桁。 100 2 よって *< ( 1 ) ¹⁰° < ゆえに,小数第18位 に初めて 0 でない数字が現れる。100mgor (2) 10MN <10%+1 (3) 10 N10-k+1 ならば, Nは小数第位 に初めて0でない数字が現 れる 881 logı2=0.3010, logw3=0.4771とする。 15' は桁の整数であり, ( 2 3 ) 100 は小数第1 1位に初めて0でない数字が現れる。 p.294 EX118 章2 5章 32 常用対数

回答募集中 回答数: 0