学年

教科

質問の種類

数学 高校生

⑵なんですが、問題の意味も、解説の意味も全然わかりません、教えてほしいです🙇‍♀️

重要 例題 71 定義域によって式が異なる関数 次の関数のグラフをかけ。 (1) y=f(x) (2) y=f(f(x)) 関数f(x) (0≦x≦4) を右のように定義すると (0≦x<2) f(x)= (x)=x 8-2x (2≦x≦4) 123 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2) f(f(x)) f(x)のxf(x) を代入した式で, 0≦f(x) <2のとき 2f(x), 2f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0 f(x) <2となるxの範囲と, 2≦f(x)≦4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 3章 2 ⑧関数とグラフ (2f(x) (0≤f(x)<2) 解答 (2) f(f(x))= 8-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 向 f(f(x))=8-2f(x)=8-2.2x =8-4x 1≦x<2のとき 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4 のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) YA YA 4 2 1 変域ごとにグラフをかく。 (1) のグラフから、f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため、 (2) は左 その解答のような合計4通 りの場合分けが必要に なってくる。 0 「 「 1 J 1 2 3 4 X 0 1 2 3 4 X (2)のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が =f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 成関数といい、 (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 YA 8から2倍を 引く 4 2 0 4 x 2倍する

回答募集中 回答数: 0
数学 高校生

コサシの線を引いたところが理解できませんでした。教えて頂きたいです🙇‍♀️

第4問 (配点 20)の点(可) 太郎さんと花子さんの学校で全員参加の球技大会が実施される。競技の種類は、 サッカー,バレー,テニスの3種類で,1人が参加できる競技は一つだけである。 太郎さんと花子さんは,自分たち2人とその友人6人の合計8人の競技への参加 方法について話している。 太郎:前回の球技大会ではみんな同じ競技に参加したから、今回の球技大会 では,どの競技にも8人のうちだれかが参加するようにして,あとで 情報交換しようよ。そうしたとき,どの競技に何人が参加することに なるのかな。 花子:どのような人数の組合せがあるか考えてみようよ。 8人を三つに分ける とき,例えば,{1人, 1人, 6人} や {1人,3人,4人} などがあり,人 数の組合せは全部で5通りあることがわかるね。 太郎:でも,競技の種類は3種類だから,それぞれサッカー,バレー,テニ スの場合を考えないといけないね。 どの競技に何人が参加するかを対応させる方法は,8人を {1人, 1人,6人} に 分けるときは ア 通り, {1人,3人,4人} に分けるときは イ |通りである。 太郎:他の人数の組合せも同じように調べてもいいけど,他に方法はないの かな。 花子:次のように考えたらどうかな。 一花子さんの考え 8個の○と2本の仕切り棒」を用意し、それらを横一列に並べて 左側のより左にある○の個数をサッカーの参加人数 2本のの間にある○の個数をバレーの参加人数 右側のより右にある○の個数をテニスの参加人数 と対応させて考える。 例えば, 〇〇〇〇〇〇〇〇の場合なら サッカーが3人, バレーが3人, テニスが2人 となる。

回答募集中 回答数: 0