学年

教科

質問の種類

数学 高校生

大学受験の過去問です。回答教えて欲しいです!

次の問題1 は 1 以下の問いに答えよ。 の中に解答を書くこと。 (1) a,bを実数として、 複素数 1-v 1+V2 (2) 2次方程式2+3c-1=0の2つのをaとするとき, of af +82= ある。 また、公差は fo (3) 初境が6で未項が16の等差数列があり、 すべてのが90 となるとき、数は のは の形に表すと、 である。 特式f(d=22-5-3 を満たす関数f(x)は である。 である。 - である。 212 3 人 となる。 (5) Blogs logs 50g 計算すると / である。 また, log2 5 x logs 3 x log」 8 を計算すると 3 wysostora. のとき、y=cos 20 +2sin 01 の最大値は である。 また、 5回投げたとき、点Pが1より右の位置にいるは 15 3 (6) 出たときは左へ2だけ進むものとする。さいころを3回投げたとき、点Pが点いる確率は である。 で 定数aの値は である。 また、そのときの (7) 数直線上で、点Pは点Oを出発し、さいころを投げて4以下の目が出たときは右へ」だけ進み、他の目が 3 である。 次の問題 2 は卵に至るまでの計算過程を書くこと。 20h=(2,-1),OB=(1,3), 06 (7,7) のとき、次の問いに答えよ。 T (1) a, B を実数として、0+801と表すとき,の値を求めよ。 (7.7)=d(2,-1)+B(1,3) 7=0+3B7=-X+9 d=2、B=3 △OAB において、辺ABと直線OCの交点をPとするときを実数としてOP=OCとせるの 値を求めよ。 (2) 直線BC上を点Qが働いて行くとき, PC が最小となるような点の座標を求めよ

回答募集中 回答数: 0
数学 高校生

103.2 記述に問題点等ありますか?

と 素 のの 参照。 倍 や 考え さ の はる 去は、 音数 され 本書 数は して、 含め ・35 きる = 5.7 基本 例題 103 約数と倍数 は0でない整数とする。 a, a 1①1) 1/14/0 a がともに整数であるようなαをすべて求めよ。 とんがともに3の倍数ならば, 7a-46も3の倍数であることを証明せよ。 (2) a (③) a が6の倍数で,かつaが6の約数であるとき,aをbで表せ。 「αが6の倍数である」ことは,「6がαの約数である」 ことと同じであり,このとき, 整数kを用いて a=bk と表される。このことを利用して解いていく。 (1) αは5の倍数で,かつ40の約数でもある。 解答 (1) が整数であるから, αは5の倍数である。 ゆえに, って 40 40 8 a 5k k 40 が整数となるのはんが8の約数のときであるから a k = ±1, ±2, ±4, ±8 α=5kと表される。 を整数として したがって α = ±5, ±10, ±20, ±40 (②) a,bが3の倍数であるから,整数k, lを用いて 0 a=3k, b=3l と表される。 よって 7-46=7・3k-4・3l=3(7k-4l) 7k4lは整数であるから, 7a-4bは3の倍数である。 (3) a が6の倍数, αが6の約数であるから, 整数k, lを用いて a=bk, b=al と表される。 a=bk をb=al に代入し, 変形すると b=0であるから (検討 これは 誤り! b(kl-1)=0 kl=1k,lは整数であるから a=±b したがって 00000 p.468 基本事項 ① k=l=±1 bαの約数 a=bk Laは6の倍数 < =k(kは整数)とおい 5 てもよい。 < α = 5k を代入。 負の約数も考える。 <a =5kにkの値を代入。 整数の和差積は整数で ある。 α を消去する。 k,lはともに1の約数であ る。 上の解答の で, lを用いずに, 例えば (2) で α=3k, b=3k のように書いてはダメ! これでは α = bとなり, この場合しか証明したことにならない。 α, 6は別々の値をと のようにk, Z (別の文字) を用いて表さなければならない。 る変数であるから, 練習 (1) 2つの整数 α, bに対して, a=bk となる整数kが存在するとき, bla と書く 103 ことにする。 このとき, a 20 かつ2αであるような整数α を求めよ。 証明せよ。 ただし, a, b, c, d は整数とする。 倍数ならば, ' + 62 は8の倍数である。 とげcdはabの約数である。 469 4章 7 約数と倍数 最大公約数と最小公倍数 17 5 O" ON YO 3 7 し

回答募集中 回答数: 0
数学 高校生

75.1 証明の記述に問題ないですか?

416 00000 基本例題 75 三角形の面積比 (1) ABCの辺AB, AC 上に、それぞれ頂点と異なる点D,Eをとるとき、 △ADE AD AE が成り立つことを証明せよ。 △ABC AB AC (2) △ABCの辺BC, CA, AB を 3:2に内分する点をそれぞれD,E,Fとす る。 △ABCと△DEF の面積の比を求めよ。 基本69 指針▷三角形の面積比は, p.410で考えたように等しいもの(高さか底辺)に注目する。 (1) まず, 補助線 CD を引く。 △ADEと△ADC では何が等しいか。 三角形の面積比 等高なら底辺の比, 等底なら高さの比 (2)(1) を利用。△DEF は, △ABCから3つの三角形を除いたものと考える。 2147 解答 (1)2点CDを結ぶ。 △ADEと△ADC は, 底辺をそれぞれ線分 AE, 線分 AC と AADE AE みると,高さが等しいから ① AADC AC △ADCと△ABC は, 底辺をそれぞれ線分 AD, 線分AB と 101=M8 みると,高さが等しいから (2) $080+ MAS = 3 ① ② の辺々を掛けると したがって (21)により AADE AADC △ADC △ABC △ADC AD AABC AB △ADE AD AE △ABC AB AC AAFE AF AE △ABC AB AC ここで 両辺を △ABC で割ると ADEF =1- △ABC . ABDF BD BF △ABC BC BA =1- AEAD 6 6 25 ACAD(*8+"CA)S="MA 37/557/5057/5 32 2|52|52|5 32 AAFE △ABC △ABC 25 25 ゆえに △ABC △DEF = 25:7 ACED CE CD △ABC CA CB ADEF=AABC-AAFE-ABDF-ACED 6 7 25 IP (A))"A+HA 6+$ 25 = 6 EST+CAA-AL/ 25 ABDF ACED 6 25 B D B 2 3 3 E T(98+9A)8=5A+EA D20 AABCHA MAJUSCUL △ABCの辺BC を 2:3に内分する点をDとし、 辺CA を 1:4に内分する点を 練習 2 75 E とする。 また, 辺ABの中点をFとする。 △DEF の面積が14のとき, の面積を求めよ。 (180+0A8 A+S p.418 EX47 △ABC まと 三角 1 B [別ア: ローラ こ (三角 (1) 証 BOF 17 & 証明

回答募集中 回答数: 0
数学 高校生

37(1)で例えば f についてだと、解説では f1、 f2 に分けて考えているけど実際fは同じものだから2の階乗で割る必要があると思うのですが、、、 教えて頂けると嬉しいです🙇‍♀️🙏💦

16 00000 基本例題 37 順列と確率 (2) 同じものを区別する coffee の6文字を次のように並べるとき、各場合の確率を求めよ。 (1) 横1列に並べるとき, 左端が子音でかつ母音と子音が交互に並ぶ確率 P.32 基本事項 (2) 円形に並べるとき, 母音と子音が交互に並ぶ確率 指針 ... 確率の基本 同じものでも区別して考える に従い、2個ずつある fとeをそれぞれ区別して, fs, fz, e1, ez と考える。 (1) まず, 子音を並べ、次にその間と右端に母音を並べる。 (2)「円形」に並べるから、円順列の考えを利用する。 まず, 子音を円形に並べて固 定し、次に子音と子音の間に母音を並べる。 注意 アルファベット26文字のうち, a,i,u, e, o を母音, 残り 21 文字を子音という。 2 個の f を f1,f2, 2個のe をeezとすると, 母音は 0, 解答 1, 2,子音は c, f1, f2 である。 (1) 異なる6文字を1列に並べる方法はP=6! (通り) 子音3文字を1列に並べる方法は 3P3=3! (通り) そのおのおのについて,子音と子音の間および右端に 母音3文字を並べる方法は 3P3=3! (通り) よって, 求める確率は 3!×3! 1 6! 20 (2) 異なる6文字の円順列は (6-1)!=5! (通り) 子音3文字の円順列は (3-1)! 2! (通) そのおのおのについて,子音を固定して, 子音と子音の 間に母音3文字を並べる方法は P3=3! (通り) よって、求める確率は 2!×3! 5! A.B.C ****** = 1 10 <指針」 の方針 確率では,同様に確から しいことが前提にあるた め、 同じものでも区別し て考える。 左端は子音 COL 口口口 母音 積の法則を利用。 YA (4) 固定 [] に母音を並べる。

回答募集中 回答数: 0