学年

教科

質問の種類

数学 高校生

?のところなぜどちらも切片の値が片方より小さいのに最大になるんですか?

(1) α = 70 とする。 x≧175 のとき、①より x=70,300のとき, z=-10000 であるから, グラフの軸の方程式は _70+300 -=185 である。 2 x= z=-4(x-300)(x-70)-10000 x= x<175 のとき,②より 2=-4 (x-300) (x-80)-5000 x = 80,300 のとき, z=-5000 であるから, グラフの軸の方程式は 80+300 =190 である。 2 よって, 求めるグラフは次のようになる。 ①と②それぞれのグラフの軸 と直線 x = 175 の位置関係によりグラフの概形として最も適当なものは ②である。 グラフより, zが最大となるxの値は x=185 (⑦) x= 100 2) α = 40 とする。 x≧175 のとき①より z=-4(x-300)(x-40)-10000 ・x<175 のとき,②より 3- 175 185 200 190 x=40,300のとき, z=-10000 であるから, グラフの軸の方程式は 300+40 F =170 である。 2 XC z=-4(x-300)(x-50)-5000 x=50,300のとき, z=-5000 であるから, グラフの軸の方程式は 300+50 2 =175 である。 よって, zが最大となるxの値は x=175 (⑤) 10 |z=-4(x-370x+21000)-10000 >=-4(x-185)² +42900 ◄z=-4 (x²-380x+24000)-5000 =-(x-190)2+43400 ①,②のグラフの軸の位置に着目 する。 解法の糸口 zのグラフは,上に凸の放物 線の一部どうしをつないだもの であるから 2人の会話にある ように軸の求め方を考える。 548 De SE2 1-(++). 明 1z=-4 (x2-340x+12000)-10000 =-4(x-170)² +57600 z=-4(x2-350x+15000-5000 =-4 (x-175)² +57500

回答募集中 回答数: 0
数学 高校生

絶対値の不等式の問題です。この不等号に=がつくときはプラスで、つかないときはマイナスの時って認識しております。それで(1)、(2)もとけているんですが、何故か、(3)からそれが違くなります。マイナスなのにイコールがつきます。どなたか教えてください。

|離席などの行為は、事故やトラ 0 日曜日 祝日の下記時間帯分の 1→ 105 次の方程式、不等式を解け。 □(1) | x+2|=6 噂 312-x≤4 frer 106 次の不等式を解け。 8≤|x-1|<9 (x-11 スタッフが入口で①クールから順に整理券を配布します。 ①クール分の配布が終了しましたら、②クール分、③クール分を配 その日の全クール分の整理券がなくなり次第配布終了となります。 整理券はお1人様1枚のみ配布します。 文字が左右 (7) 90(<9 =(1)) (-1 < 8 8 Day 演習 AA44 107 次の方程式、不等式を解け。 □(1) 2x-3=|x+1| 7314-3x|≦x 絶対値 AAAD '108 次の方程式 不等式を解け。 100|x|+|23|=3 口 (2) 1 V 3 1 2 3 1次不等式 12x+315 p.40 14. p.41 15 □ (2) 3x+2=2x-1| 414x31>-x+7 2x+3<3<5<2X*} p.42 例題 14 p.43 例題2②22 □②x-1|-|x|=2x x-1/+16-221>5 (4) |x-1|+|x+315 ISSISto 値記号の中の式の値が2つとも0以上の場合と、1つは0以上で1つは負 の場合と、両方とも負の場合に分けて考える。 P=la-s|xk| 578 109 P=√a-10a+25+164 +16 について 次の問い □(1) Pを絶対値記号を用いた式で表せ。 について、 口 (2) P=2となるαの値をすべて求めよ。 Passist B (1) は まず根号の中の式を因数分解する。 (2) は, 得られた α の値が場合分けの条件を満たすか確認する。 XZ- 578-> (24) 579> (3≤X<1) OX(うなったく すべてがすっ 579 23 27 (1) X<Y X<o + Œ XCL O + 0=X<3 3/5 6-2x XCO, 0≤x C1. Il f 13 + Isi なんで≦くろ、3 ではないのか ⑨ KX33Xになっています

回答募集中 回答数: 0
数学 高校生

74.2 これでも大丈夫ですよね??

分する。 よ。 を する。 (X₂, 3) の座標は の平均 ばよい。 < 1 7 平行四辺形の頂点の座標 基本例題 74 (1) A(7, 3), B(-1, 5),C(5, 1), D を頂点とする平行四辺形ABCD の頂点D の座標を求めよ。 (2)3点A(1,2), B (5, 4), C (3, 6) を頂点とする平行四辺形の残りの頂点D の座標を求めよ。 指針 平行四辺形の対角線は、互いに他を2等分するから, 2本の対角線の中点が一致する。 このことを利用して,点Dの座標を求める。・・・・・・・・・・ (普通、平行四辺形ABCD というように,頂点の順序が与えられているときは,Dの位 置は1通りに決まる。 (2) (1)異なり、頂点の順序が示されていないから, 平行四辺形ABCD と決めつけては いけない。 ABCD, ABDC, ADBCの3つの場合を考える。 解答 頂点Dの座標を(x,y) とする。 (1) 対角線AC, BD の中点をそれぞれ M, N とすると M(715, 3+¹), N(−1+x 5+y) 2 点Mは点N と一致するから -1+x 4 12 2 22 5+y 2 よって x=13, y=-1 ゆえに D(13, -1) (2) 平行四辺形の頂点の順序は,次の3つの場合がある。 [1] ABCD [2] ABDC [3] ADBC [1] の場合,対角線は AC, BD であり,それぞれの中点を M, N とすると M(1+3, 2+6), N(5+x 4+v) 2 以上から、点Dの座標は 4 2 _5+x 2 8 4+y 2 2 M, Nの座標が一致するから これを解いて x=-1, y=4 [2] の場合,対角線は AD, BCであり,同様にして 1+x=22₁ ²2 8 2+y_10 2 よって x=7, y=8 [3] の場合,対角線は AB, CD であり,同様にして 6 3+x 6 6+y 2 22 2 よって x = 3, y=0 (-1, 4), (7, 8), (3, 0) B. p.113 基本事項 ④4 0 M(N) C C A AL DM B D x D' (検討) 上の図で, 線分 AD', BD, CD" の交点は △DD'D" の重 心であり, △ABC の重心で もある。 練習 3点A(3, 2), B(4, 1), C (1, 5) を頂点とする平行四辺形の残りの頂点Dの座 ② 74 標を求めよ。 119 3章 12 直線上の点 平面上の点

回答募集中 回答数: 0
数学 高校生

62.1 方程式の解の1つをwとしているので x^2+x+1=0をw^2+w+1=0としてしまうと 二次方程式の2つの解がwで表せるようになってしまうので条件 と合わなくないですか??

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40 +7 とする。 の1次式 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をωの1 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した、次の方針に従って進める 高次式の値 条件式を用いて次数を下げる 割り算の問題等式 A =BQ+R の利用。 B = 0 を考える ω'+ω+1=0 (1) は x2+x+1=0の解であるから これを用いてまずの値を求め、その値を利用してf(ω) の式の次数を下げる。 (2) 求める余りはαx+b と表されf(x) = (x2+x+1)Q(x)+ax+b これにx=ω を代入すると f(w)=aw+b Q(x) は商 解答 (1) は x²+x+1=0の解であるから よって w²=-w-1, w²+w=-1 w²+w+1=0 また, 80=3・26+2, 40313+1 であるから (*) w³-1 3a+s=(w-1)(w²+w+1)=0 eee²=(a-1)=-(ω^+c)=(-1)=1) から1としてもよい。 は1の虚数の3乗根であ る。 f(w)=w8⁰-3w40 +7=(w³) ²6 w²-3(w³) ¹³.w+7 =126.(-ω-1)-3・13・ω+7=-4ω+6 (2) f(x) を x2+x+1で割ったときの商をQ(x), 余りをax+b (a,bは実数) とすると 練習 f(x)=(x2+x+1)Q(x)+ax+b ω'+ω+1=0であるから (1) から -4w+6=aw+b α, b は実数は虚数であるから a=-4, b=6 したがって 求める余りは -4x+6 f(w)=aw+b が成り立つ。 次数を下げて1次式に。 [参考] a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz ⇔a=c かつ b=d [証明] [①の証明] (←) 明らかに成り立つ。 (⇒) b=0 と仮定するとz=- :=-1 このとき a=0 b=0 よって ② の証明は、(a-c)+(b-dz=0 として上と同様に考えればよい。 なお、上の①②は、p.62の①②を一般の場合に拡張したものにあたる。 2018をx²+x+1 で割ったときの余りを求めよ。 → (2) A=BQ+R 割る式B=0 を活用。 下の参考② を利用。 S 左辺は虚数,右辺は実数となるから矛盾。 基 3次 定業 指針 解 -18 (-1) すな これ よっ 左辺 した 別解 fC (x 右 こ し xC * E C

回答募集中 回答数: 0
数学 高校生

73.3 これでも記述大丈夫ですよね??

118 日 基本例題73 線分の内分点外分点、重心室1000 3点A(5,4),B(0, -1), C(8, -2) について,線分 AB を 2:3に外分する。 をP, 3:2に外分する点をQとし、△ABCの重心をG とする。 (1) 線分 PQ の中点 M の座標を求めよ。 (2) 点Gの座標を求めよ。 (3) APQS の重心が点G と一致するように, 点Sの座標を定めよ。 p.113 基本事項 ④,⑤5 指針 座標平面上の3点A(x1, y1), B(x2, y2), C(x3, y3) について > nxi+mx2 ny₁+my² 線分ABの内分点 m+n m+n 線分 AB の外分点 解答 (1) 点Pの座標は (2) 練習 73 |-nxi+mx2 m-n -3.5+2.0 -3・4+2・(-1)) 2-3 2-3 点Qの座標は (-2.5 +3.0 -2.4+3・(-1)\ 3-2 9 9 から よって, 線分PQの中点 M の座標は (*) (15+(-10) 14+ (-11)) 2 2 (2) 点Gの座標は y+y2+ys △ABC の重心 x+x2+x3 3 3 (3)S(x,y)として, APQS の重心と点Gのx座標、y座標をそれぞれ一致させる。 |から " -nyi+myz m-n (15,14) 5+x 3 5 すなわち (12/28) 3 2' (5+0+8+(-1)+(-2)) すなわち ( 13.1/28) 3' (3) S(x, y) とすると, (1) から, △PQSの重心の座標は (15+(-10)+x 14+(-11)+ど)から(3) これが点Gの座標と一致するとき よって (-10, -11) ALL (DS-də+²µà)8= 13 (3+y 3' 3 x=8, y=-2 すなわち S(8,-2) 内分点の公式でnを -n におき換えた形 21-684-10-200 (*) 2点 (x1,y1, x2, を結ぶ線分の中点の座標: 1 3 重要 81. 1A x₁+x₂ ₁ + y₂ 2 2 内分点の公式で, m=n=1 としたもの。 (2)2点A(-1,-3), B を結ぶ線分AB を 2:3に内分する (1−1)であるという。このとき, 点Bの AUTA 重心の座標は、3点の平均 とイメージしておけばよい dan+ 0x (1) 3点(1,1),B(3,4,62) にいて、線分ABを3:2に内分する をP, 3:2に外分する点をQとし, △ABC の重心をG とする。 このとき, 3点P, Q, Gの座標をそれぞれ求めよ。 I ! 頂

回答募集中 回答数: 0
数学 高校生

73.3 これでも記述大丈夫ですよね??

118 日 基本例題73 線分の内分点外分点、重心室1000 3点A(5,4),B(0, -1), C(8, -2) について,線分 AB を 2:3に外分する。 をP, 3:2に外分する点をQとし、△ABCの重心をG とする。 (1) 線分 PQ の中点 M の座標を求めよ。 (2) 点Gの座標を求めよ。 (3) APQS の重心が点G と一致するように, 点Sの座標を定めよ。 p.113 基本事項 ④,⑤5 指針 座標平面上の3点A(x1, y1), B(x2, y2), C(x3, y3) について > nxi+mx2 ny₁+my² 線分ABの内分点 m+n m+n 線分 AB の外分点 解答 (1) 点Pの座標は (2) 練習 73 |-nxi+mx2 m-n -3.5+2.0 -3・4+2・(-1)) 2-3 2-3 点Qの座標は (-2.5 +3.0 -2.4+3・(-1)\ 3-2 9 9 から よって, 線分PQの中点 M の座標は (*) (15+(-10) 14+ (-11)) 2 2 (2) 点Gの座標は y+y2+ys △ABC の重心 x+x2+x3 3 3 (3)S(x,y)として, APQS の重心と点Gのx座標、y座標をそれぞれ一致させる。 |から " -nyi+myz m-n (15,14) 5+x 3 5 すなわち (12/28) 3 2' (5+0+8+(-1)+(-2)) すなわち ( 13.1/28) 3' (3) S(x, y) とすると, (1) から, △PQSの重心の座標は (15+(-10)+x 14+(-11)+ど)から(3) これが点Gの座標と一致するとき よって (-10, -11) ALL (DS-də+²µà)8= 13 (3+y 3' 3 x=8, y=-2 すなわち S(8,-2) 内分点の公式でnを -n におき換えた形 21-684-10-200 (*) 2点 (x1,y1, x2, を結ぶ線分の中点の座標: 1 3 重要 81. 1A x₁+x₂ ₁ + y₂ 2 2 内分点の公式で, m=n=1 としたもの。 (2)2点A(-1,-3), B を結ぶ線分AB を 2:3に内分する (1−1)であるという。このとき, 点Bの AUTA 重心の座標は、3点の平均 とイメージしておけばよい dan+ 0x (1) 3点(1,1),B(3,4,62) にいて、線分ABを3:2に内分する をP, 3:2に外分する点をQとし, △ABC の重心をG とする。 このとき, 3点P, Q, Gの座標をそれぞれ求めよ。 I ! 頂

回答募集中 回答数: 0