学年

教科

質問の種類

数学 高校生

囲った部分なぜ、式が変わるのか理解できません。 2k-1と2’k-1のやつです。

1 2 ZZZ 初項から第210項までの和を求めよ。 解答 指針 分母が変わるところで区切りを入れて,群数列として考える。 分母: 1|22|3, 3, 34, 4, 4,4|5, 1個 2個 3個 4個 第n群には、分母がnの分数がn個あることがわかる。 分子: 12,3|4,5,67, 8, 9, 10|11 分子は,初項 1,公差1の等差数列である。 すなわち,もとの数列の項数と分子 は等しい。 まず,第 210 項は第何群の何番目の数であるかを調べる。 分母が等しいものを群として,次のように区切って考える。 8 9 67 5 10|11 1 | 2 34 12'23'3' 3 4'4'4' 5 第1群から第n群までの項数は 1+2+3+ ・・・・..+n= n(n+1) =1/√n(n²+1)÷n=² n²+1 2 第210項が第n群に含まれるとすると (n-1)n <210≤ n(n+1) よって (n-1)n<420≦n(n+1) (n-1)n は単調に増加し, 19・20=380, 20・21=420 である から ① を満たす自然数nは n=20UH また,第 210 項は分母が 20 である分数のうちで最後の数 1/2 ・・20・21=210 である。 ここで,第n群に含まれるすべての数の和は 1/27 12.11/2n(n-1)+1}+(n-1)・1) ÷n ゆえに, 求める和は 20k2+1 20 2+¹ -12 +21)-(20-21-41 +20) ²² k=1 2\k=1 .=1445 k=1 [類 東北学院大 ] ...... 練習の累康を分母とする既約分数を,次のように並べた数列 ③ 30 13 2'4'4'8' 8 8 768.1/16 3 5 う " 16'16'16' について、第1項から第100項までの和を求めよ。 1 3 5 いて、 もとの数列の第k項 分子がんである。ま 群は分母が 個の数を含む。 これから第n群の の数の分子は、 n(n+1) は第群の数の分 子の和→ 等差数列の n{2a+(n-1)d} 15 1 16' 32 【類岩手大】 P.460 EX 自然委 (1) 大 料 (2) 1 る 指針

回答募集中 回答数: 0
数学 高校生

244. この問題において、Dを求めることって必要ですか? 実際この問題はDを求めずとも答えに辿り着けるし、 他の教材等で同様の問題の解答を見たときDについて調べていなかったのですが、必要なのでしょうか??

372 基本例題 244 面積の最大最小 (1) 点 (1, 2) を通る直線と放物線y=x² で囲まれる図形の面積をSとする。 S AA ARŠNODUR 小値を求めよ。 指針 点 (1,2) を通る直線の方程式は,その傾きを m とすると,y=m(x-1)+2と表され まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BでSを表す。 このとき, 公式f(x-a)(x-3)dx=-12 (B-α) が利用できる。 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ...... ① と表される。 直線 ① と放物線y=x2 の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x2-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m-2)2+4 常に D>0 であるから, 直線 ① と放物線y=x2 は常に異なる 2点で交わる。 その2つの交点のx座標をα, β(α<β) とすると s=${m(x-1)+2-x*}dx=- = -√²₂(x²-₁ T 2-mx+m-2)dx =-f(x-a)(x-B)dx=1/12(B-α) また B-α= m+√√D m-√√√D -=√D=√(m-2)² +4 2 2 したがって, 正の数β-α は, m=2のとき最小で,このとき (B-α)も最小であり,Sの最小値は 1/12 (14)-1/30 adst 7-8-9 adot x2-mx+m-2=0の2つの解をα, β とすると よって ゆえに (B-a)²=(a+β)²-4aβ=m²-4(m-2)=(m−2)²+4 3₁ 点 (1,2)を通りに な直線と放物線y=x^ まれる図形はない。 よって x軸に垂直な直線は考えな てよい。 X=- 検討 β-αに解と係数の関係を利用 S=1/12 (B-4)において, (B-α)の計算は 解と係数の関係を使ってもよい。 a+β=m,aβ=m-2 (1,2) α, βは2次方程式 x²-mx+m-2-00 TS, mt√m²-4m+! 2 S=— (B—a)³= ¹ {(B—a)³²}* = = = {(m−2)² + 4) ³ ≥ — • 4³-4 6 m²-4m+8=D XD-M300 TIROMA

回答募集中 回答数: 0
数学 高校生

11月の進研模試の数学の問題です。 (2)で、マーカーを引いている部分は、 なぜ"未満"ではなく、"以上"という意味の記号を用いるのか教えてください。

配点 解答 (1) (2) B2 完答への 道のり [1] 集合と命題(10点) NORIS 実数xに関する条件 g を次のように定める。 ただし は正の定数とする。 p:|x-2<3 ...... ① q: x²-ax-2a² <0 全4点 全日本 A 6点 (1) 不等式 ① を解け。 (2) SHOP [s] gであるための必要条件であるようなaのとり得る値の範囲を求めよ。 条件の不等式を解くと |x-2|<3 -3<x-2<3 -1<x<5 すなわち a≦l かつ 条件g の不等式を解くと x2-ax-2a²<0 A x-2のとり得る値の範囲を求めることができた。 B条件の不等式を解くことができた。 5 a so (x+a) (x-2a) <0 α >0 より, -a < 24 であるから -a<x<2a... がg であるための必要条件であるということは, 命題 g♪が真であ るということから, ③ の範囲が②の範囲に含まれればよい。 したがって _isa かつ 2a≦5 a ≤ 1 > 0 より 求めるαの値の範囲は 0 <a ≤1 NO 042 -110 -a Qales 560 2a -1<x<5 35- sa 絶対値を含む不等式の解 c>0 のとき |x|<c-c<x<c ass IN HIS D-75 0<a≤1 ・③α <βのとき、 2次不等式 (x-a)(x-β)<0の解は α<x<B 命題pgが真であるとき pg であるための十分条件 gはp であるための必要条件 という。 条件を満たすもの全体の集合を P, 条件g を満たすもの全体の集会 をQとするとき 命題pg が真である ⇒PCQ SUOE

回答募集中 回答数: 0