学年

教科

質問の種類

数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

ベクトルの問題です (2)のOH、BH、AHを図形ではどう表わすのか教えて欲しいです

「基本例題 27 垂心の位置ベクトル 403 0000 平面上に △OAB があり,OA=5,OB=6,AB=7 とする。また,△OAB の垂 6 心をHとする。 (1) cos ∠AOB を求めよ。 (2) OA=d, OB=とするとき,OH をa,” を用いて表せ。 指針 1 p.379 基本事項 重要 29 章 三角形の垂心とは,三角形の各頂点から対辺またはその延長に下ろした垂線の交点で あり △OAB の垂心Hに対して, OA⊥BH, OB⊥AH, AB⊥OH が成り立つ。 そこで, OA⊥BH といった図形の条件をベクトルの条件 に直して解く。 (2)ではOH=sa+tとし, OABH=0, OBAH=0の2つの条件から,s.tの値を求める。 (1)余弦定理から H A B 4 位置ベクトル、ベクトルと図形 52+62-72 12 解答 COS ∠AOB= 2.5.6 60 (2)(1) から ab=abcos ZAOB=5.6.- 1-5 =6 5 △OAB は直角三角形でないから,垂心Hは2点A, B と一致することはない。 Hは垂心であるから OA⊥BH, OB⊥AH OH=sa+to (s, t は実数) とする。 OA⊥BH より OA・BH = 0 である 8日 から よって ゆえに すなわち d•{sa+(t-1)}=0 slaf+(t-1)a=0 25s+6(t-1)=0 25s+6t=6 ...... A a HH 【参考】 |AB=16-G =1612-26-a+la |AB|=7, |a|=5,||=6 であるから 72=62-25 ・a+52 よって a1=6 指針一 ★ の方針。 垂直の条件を (内積)=0 の計算に結び つけて解決する。 B <|a|=5, a1=6 また,OBAH より OB・AH=0であるから {(s-1)a+t6}=0 (s−1)ã•+t|b|²=0 6(s-1)+36t=0 すなわち s+6t=1・ ② よって ゆえに 5 19 ①②から S= t= 24' 144 5 したがって OH=a 24 144 19 a+ -6 ① 垂直→ (内積) = 0 AH=OH-OA <a-b=6, 161=6 ■ ① ② から 24s=5 練習 平面上に △OAB があり, OA=1,0B=2, ∠AOB=45°とする。また,△OAB の 27

回答募集中 回答数: 0
数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0