学年

教科

質問の種類

数学 高校生

(2)の解き方が分かりません😭教えてください

a の値の範 基本145 , 与式は 1つの解をも 着目 239 重要 例題 149 三角方程式の解の個数 aは定数とする。 10 に関する方程式 sin' d-cos0+a=0について,次の問いに 答えよ。 ただし, 0≦02 とする。 この方程式が解をもつためのαの条件を求めよ。 (2)この方程式の解の個数をαの値の範囲によって調べよ。 COS0=xとおいて, 方程式を整理すると 指針 x2+x-1-a=0(-1≦x≦1) 前ページと同じように考えてもよいが,処理が煩雑に感じられる。そこで, 02 重要 148 ①定数αの入った方程式 f(x) =αの形に直してから処理に従い,定数a を右辺に移項したx2+x-1=αの形で扱うと, 関数 y=x'+x-1 (-1≦x≦1) のグラ フと直線y=αの共有点の問題に帰着できる。 ← → 直線 y=a を平行移動して,グラフとの共有点を調べる。 なお (2) では x=-1,1であるxに対して0はそれぞれ1個, 1 <x<1であるxに対して0は 2個あることに注意する。 cos0=x とおくと,0≦0<2から この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 =0をαにつ ると (x-2) 切線 y=x2 と 4 4章 2 三角関数の応用 -2) の共有 S 範囲にある 解答 方程式は (1-x2)-x+α=0 もよい。 解 参照。 したがって x2+x-1=a cost f(x)=x'+x-1とすると f(x) = (x+1/12/27 5 グラフをかくため基本形に。 4 (1)求める条件は,-1≦x≦1の範囲で、y=f(x) のグラフと直線 y=aが共有点をもつ条件と同じ y=f(x) ' 5 y=a 1 である。 よって, 右の図から ≦a≦1 [6]- + [5]- ' 1 X 1 (2) y=f(x) のグラフと直線 y=αの共有点を考え 2 x て 求める解の個数は次のようになる。 [4]- [1] a <! 1 <αのとき 5 4' 共有点はないから 0個 [3]- 5 [2] 1 T 練習 149 [2] a=- 5 のとき,x=-1/2から2個 4 12/23から2個 さ to se XA [6]- 5 [3] <a<1のとき [5]~ 0 [4] - π 12 [日 [2] [3] [4]- -1 はそれぞれ1個ずつあるから 2 4個 -1<x</12/12<x<0の範囲に共有点 [4] α=1のとき、x=-1, 0 から 3個 [5] -1 <a<1のとき, 0<x<1の範囲に共有点は1個あるから 2個 [6] a=1のとき,x=1から1個 108 OP 10に関する方程式 cosine-α-1=0の解の個数を, 定数αの値の範囲に

解決済み 回答数: 1
数学 高校生

数1 (一枚目は問題と回答、二枚目は自分で解いた写真です。) 自分で解いたのは回答と全く違うやり方で、答えも違っています。二枚目のどこがダメなのか教えて欲しいです。

例題 1176 等式と値 00000 0°<0 <180°とする。 4cos0+2sin0=√2 のとき, tan0 の値を求めよ。 CHART & SOLUTION 2-in [大阪産大] 基本 113 三角比の計算かくれた条件 sin20+cos20=1 を利用 tan 0 の値は sind, cose の値がわかると求められる。 そこで かくれた条件 sin'0+cos'0=1 を利用して,sine, cose についての連立方程式 4cos0+2sin0=√2,sin'0+cos20=1 →cosを消去し, sin0 の2次方程式を導く。 を解く。 解答 4cos0+2sin0=√2 を変形して 4cos=√2-2sin0 sin20+cos20=1 の両辺に 16 を掛けて 16sin 20 +16cos20=16 ①を② に代入して ・① 4cos+2sin0 = √2 を条件式とみて、条件式 は文字を減らす方針で COSO を消去する。 4章 13 三角比の拡張 t=- 16sin20+(√2-2sin0)²=16 整理して 10sin2-2√2 sin0-7=0 ここで, sind=t とおくと これを解いてt=- よって 10t2-2√2t-7=0 sin √2+√2 (*) 10 √2 7/2150 2 sin10 0°<0 <180°であるから 0<t≤1 (*) 2次方程式 ax2+26'x+c=0 の解は x= -6' ±√b2-ac a fint. sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 1 0°<0 <180°から これを満たすのは t= 7√2 10 cos 0= 2 の2 10 7√√2 すなわち つが得られるが, sin0= 10 ①から 4 cos 0=√2-2.7√2 √2 co cos = のときは 2 = ゆえに を求めると √2 10 cos 0=- 10 すなわち 2√2 5 sin0 <0となり適さない。 この検討を見逃すこともあ 0 を消去して, 符号が一定 (sin0 > 0) の sin したがって tan0= 7√2 √2 sin を残す方が, 解の吟味 =-7 COS 10 10 の手間が省ける。

解決済み 回答数: 1
数学 高校生

解説お願いします。 (3)で、参考書の解説は理解できたのですが、私の回答はどこで間違えているのか分からないので、間違っている点を指摘してほしいです。 よろしくお願いします。

例題 53 同一平面上にある条件[2] 四面体 OABC において 辺OA の中点を M, 辺BCを1:2に内分する点 を N, 線分 MN の中点をPとし, 直線 OP と平面 ABCの交点を Q, 直線 AP と平面 OBCの交点をR とする。 OA = 4, OB,OC = c とすると き、次のベクトルをa, b, c で表せ。 頻出 (1) OP (2)0Q (3) OR 1:8 例題 23 (2) (2)既知の問題に帰着 例題 23(2) の内容を空間に拡張した問題である。 さ 思考のプロセス m 章 空間におけるベクトル 〔平面〕 Q. A(a),B(b)を通る直線上 〔空間〕 Q... A(a),B(b),C(c) を通る平面上 OQ = k OP ka+ kb a P 4 A Q B OQ = k OP ka+ki+kc A4 ↑ ・和が1 a 0 C P C b ・和が1 B Action» 平面 ABC 上の点P は, OP =sOA+tOB+uOC,s+t+u=1 とせよ (1) OP OM+ON 0 2 点Pは線分 MN の中点で ある。 1 = 2 JA1 1→ a+ C 4 3 1 2b+c a+ - (+26+) 3 -1+1+17 (2)点 Q 直線 OP 上にあるから,OQ=kOPは実数 20 M OM=1/20 -OA P R C 2OB + OC A ON 1+2 とおくと OQ = ka+kb+kc 6 点Qは平面 ABC上にあるから 11/11/2 k=1 k+ 4 点Qが平面ABC 上にあ るから 4 k= 1/3 より OQ= 1→ 4 = = 1½ + ½ + ½ (3)点Rは直線AP 上にあるから, ARIAP (Iは実数) OQ=sOA+tOB+uOC のとき s +t+u=1 OR-OA-1(OP-OA) 2 とおくと OR = (1-1)+1+b+c 13 6 OC 点R は平面 OBC 上にあるから 3 ORはひとこのみで表す 1- 1=0 ことができる。 に 4 20 3 より OR= = 6+ 4 20 9 29 QB を 1:2に内分する点を Q,

解決済み 回答数: 1
数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0