学年

教科

質問の種類

数学 高校生

63.3 このような解法(記述)でも問題ないですよね??

478 00000 基本例題 63 2直線の交点の位置ベクトル 四面体OABCの辺OAの中点をP、辺BCを2:1に内分する点をQ、辺OCを 1:3に内分する点を R,辺 AB を 1:6 に内分する点をSとする。OA=d. OB=5, OC = c とすると (1) PQ を で表せ。 (2) RSをa, , で表せ。 33.197 (3) 直線 PQ と直線 RSは交わり, その交点をTとするとき, OT をもって 表せ。 解答 ! 指針 (1), (2) PQ=OQ-OP, RS=OS OR (差による分割) (fl)=90 (3) 平面の場合 (p.418 基本例題24) と同様に,一-04 交点の位置ベクトル 2通りに表し係数 La 1.6+2c 2+1 (1) PQ=OQ-OP= (2) RS=OS-OR= (3) 直線 PQ と直線RS の交点をTとする。 Tは直線PQ上にあるから よって, (1) から 6a+1.6 1+6 に沿って考える。 点 T は直線PQ, RS上にあるから PT=uPQ (u は実数), RT=RS ( は実数)として, Or をa, b,cで2通りに表し, 係数を比較する。 1 1/² à = − 1⁄² ã + ²/² b + ² / č - 3 T は直線 RS 上にあるから ゆえに,(2) から OT-OP+uPQ=(1-u)a+ub + u..... 2 3 → → P, 1 c = 4 a + 1 6-1 c 16-18AO RIST C 4 7 0x0 PT=uPQ (u は実数) 2 D RT=vRS(v は実数) b, c REMI OT=OR+vRS=/va+v6+ 1/ (1-v) č. 第1式と第2式から um/13. o=17 15 U=. v= これは第3式を満たす。 よって, ① から OT=ã+ [類 岩手大] - 15 4点O,A,B,Cは同じ平面上にないから,①,②より 6 1 1 2 1/(1-0)- 70 = 70, 3/4= 4(1-0) V, u= AO-HO 2 ·6+² / - c 15 DER AKY IS 0 $6. 3)=(1-€ I+E+S)=5A HO HA A HA A B R AN 基本24 の断りは重要。 P 2

回答募集中 回答数: 0
数学 高校生

2番わかりません

3辺の長さが3, 4, xである三角形について、 次の問いに答えよ。 xのとり得る値の範囲を求めよ. この三角形が鋭角三角形となるようなxの値の範囲を求めよ。 [3+4>x x+3>4 【解答 (1) 3辺の長さが3,4,xの三角形が存在する条件は、 3/ APST yた三角形ができない。 三角形ができるためには, a+b> c が成り立つ必要がある。 考え方 (1) たとえば, 3辺の長さが3, 4,9では、 9 (2) 鋭角三角形となるのは,最大の角が鋭角のときである。 最長となる辺の対角が最大となるので, 4とxを比較する。 辺と角の大小関係は p.425 参照) Focus これより、 x+4>3 (2) (i) 1<x<4のとき,最大の角は長さが4の辺の対 角である.それをaとすると,α<90°となるため には, x2+32-42 2.x.3 cos a=- ->0 1<x< 7 これより これと 1<x<4 より √7<x<4 (ii) 4≦x<7のとき, 最大の角は長さがxの辺の対 角である. それをβとすると, β <90°となるため には, 32+42-x2 2・3・4 √x x2+32-40 の16 cos B=- これより, -5<x<5 これと 4≦x< 7 より , よって, (i), (ii) より, ->0 32 +42-x20 a, b,c を3辺の長さと する三角形が成立する条件 1524 4≦x<5 √7<x<5 HOL BISIDASTANY C 546506 SONG SHOW a+b>c と余弦定理 241 **** a a,b,c を3辺の長 さとするなら a>0. b>0, c>0 *** であるはずだが、こ れらは、三角形の成 立条件の3つの式か ら導かれる。 (次べ ージの Column 参照) 最大角をみるために は、場合分けが必要 一般に Aが鋭角 ⇒b²+c²>a² を用いてもよい。 b+c>ala-bl<c<a+b c+a>b cos A>06²+c²>a²C815 cos A=0b²+c²=a² Aが鋭角 Aが直角 Abcos A <0b²+c²<a²b\ Aが鈍角 <3+0 第4 0% 0<S Let And A すい 次の問いに答えよ.

回答募集中 回答数: 0