学年

教科

質問の種類

数学 高校生

この手書きだと答えが違うのですが、なぜダメですか?

補充 例題 140 223 三角方程式の解法 (和積の公式の利用) ①①①①① 2πにおいて, 方程式 sin30- sin20+sin0 = 0 を満たす 0を求めよ。 CHART & SOLUTION [類 慶応大] 補充 139 2倍角, 3 倍角の公式を利用して解くのは大変 (別解 参照)。 3項のうち2項を組み合わせ て,和→積の公式 sin A+sin B=2sin- A+B A-B COS により積の形に変形。 2 2 残りの項との共通因数が見つかれば, 方程式は = 0 の形となる。 そのためには sin30 と sin0 を組み合わせるとよい。 解答 の 1 ヨチ 学 関 0与式から (sin30+sin0)-sin20=0 ここで sin30+sin0=2sin 30+0 30-0 COS 2 2 =2sin 20 cose よって 2sin 20cos-sin20=0 3 すなわち sin 20(2cos0-1)=0 あせ ← (30+0)÷2=20 である から sin 30, sin0 を組 み合わせる。 4章 積=0 の形に。 したがって sin200 または cos0= 0≦0 <2πであるから 0≤20<4л この範囲で sin200 を解くと 20=0, π, 2, 3π coso= の参考図 2 y1 1 π 3 よって 0=0,, x, x π, π 002 の範囲で cos0= π 5 |-1| を解くと 0= π 3 3 したがって,解は 3'2 0=0, 1, 7, 7. x. 3* 3 5 π, π 別解 sin 30 - sin 20+sin0 =3sin0-4sin0-2sinOcos0+sin0 =4sin 0-4 sin³0-2 sin cos 0 =2sin0(2-2sin'-cos0 ) =2sin(2cos2d-cose)=2sin0cos0 (2cos0-1) よって, 方程式は 2sincos (2cos0-1)=0 ゆえに sin00 または cos0=0 または cosθ=- 2 したがって、002 から求める解は π 0=0, 1, 1, x, x, 3 5 3' 2 π, 2T, 3π PRACTICE 140 53 T 13 ON |1 1x T 2 17 加法定理 sin30=3sin0-4sin 0, sin20=2sin Acoso ← sin20=1-cos2 COSA=Q を満たす 0 を求めよ。

解決済み 回答数: 1
数学 高校生

(2)がわかりません 解説お願いします🙇‍♀️

446 基本 例画 24 数列の和と一般項, 部分数列 00000 |初項から第n項までの和Sn が 2n²-nとなる数列{an}について (1) 一般項 am を求めよ。 指針 ((2) 和α1+α+α+....+α2n-1 を求めよ。 (1)初項から第n項までの和S”と一般項αの関係は p.439 基本事項 4 基本 48 n≧2のとき Sm=a+az+. +an-1+an - Sn-i=a+az+. +an-1 Sn-Sn-1= an よって an=Sn-Sn-1 n=1のとき a1=Si 和Sがnの式で表された数列については,この公式を利用して一般項 αn を求める。 (2) 数列の和 ①まず一般項(第ん項) をんの式で表す 第1項 第2項,第3項, ......,第k項 a1, a3, a5, a2k-1 であるから, am に n=2k-1 を代入して第k項の式を求める なお,数列 a1, 3, 5, an-1 のように, 数列{a}からいくつかの項を取り除 いてできる数列を,{a} の部分数列という。 200 00 06816P 68 SA aɛ 08 AS 815 12 (6) 23 a=S-S1= (2n-n){2(n-1)-(n-1)}+8 S=2n²nであるから Sn1=2(n-1)2-(n-1) (1) n≧2のとき 解答 =4n-3 ・・・・・ ① また α=S=2.12-1=1 +s) +81 +2 ( 初項は特別扱い ことに注意 ここで, ① において n=1 とすると よって, n=1のときにも①は成り立つ。 したがって an=4n-3 1=4・1-3=1 ann≧1で1つの式に 表される。 (2) (1)より, a2k-1=4(2k-1)-3=8k-7であるから n nst) 0+s から aux-はan=4n-3にお 「いてぇに2k-1を代入。 a+as+as+…+azn-1=242k-1=2(8k-7) 3- k=1 k=1 =8.1m(n+1)-7n (Fn(4n-3) 11+(1-10) x nas-S [A Zk, 1 の公式を利用。 に浸 部めく 基4 数列Ⅰ・ 指針

解決済み 回答数: 1
数学 高校生

ベクトルについてです。なぜ線分上に乗ったらベクトルが全て外れるのですか?

求めよ。 する。 せ ヘOF を求め、 171 ると を満たして (1) P40A OB (2)△ABCの面積を求めよ。 19 (高知) において、 AB-5, BC 7, CA-3 とする。このときの であるので AB AC である。 外接円の中心をPとする。このと (1)とのなす角を0 (0°SO 180% とす 0.8=10 || | co304×3 × co30 =12cos0 AB+RACTE, MO, - (3) AQAP (数) とすると 解答編 315 180°であるから よって -1≤ cos 0 ≤1 -12 12cos 0 12 -12-12 Qは対角線上にあるから すなわち したがって,aの最大値は 12. 最小値は12 これを解いて ゆえに AQ=+1+5 したがって BQ:QF=5:4 5+4 20B) 173 針 a-26-la-4a 6+462-10 =4-4a・1+4×325247. より1212であるから 52-4x12 52-4a b≤52-4x(-12) 4-26≤1000 すなわち 2520であるから 2≤a-20 ≤10 よって、a-26の最大値は10, 最小値は2 172 正六角形の3本の対角 AO-20 JA B 6 1 0 F AD, BE, CFの交点を 0とする。 1) AC=AB+BCO NO B =AB+ AO =a+(a+b) =2a+b AD=2AO=24+26 点Hは頂点Aから辺BCに下ろした垂線上に ある。これが△ABCの垂心であることを証明 するには、 BHICA, CHIAB であることを 示す。 OA=a, OB=b. DC=c とする。 点Oは△ABCの外心で あるから a-b-cA 点Mは辺BCの中点であ B P/ 'E MNC るから OM= b+c 1-s D OM⊥BC であるから 2. OM/AH 学 AE=AF+FE=AF+A+(a+b) =a+26 ② CP:PE=s:(1-s), DP:PF=t: (1-f) と すると AP= (1-s) AC+ sAE =(1-s) (2a+b)+s(a+26) =(2-s)a+(1+s)b AP= (1-4)AD+LAF ....... ① ゆえに AH=20M =b+c よって したがって 問題 OH=OA +AH = a+b+c BH-OH-OB &T0<; J<t =(a+b+c)-b CH=OH-OC ①,②から =(1-1)(2a+26)+1b =(2-21)a+(2-1)b (2-s)a+(1+s)b=(2-21)a+(2-1)b 0, 0, aは平行でないから 2-s=2-2t,1+s = 2-t これを解いて 3/13 S= よって AP = √ √²+10 =(a+b+c)- =a+b よって BH.CA=(a+c)(-2) CH.AB=(a+b)(-a) =-=0 BH = 0, CA ≠0, CH ≠ 0, AB ¥0 であるから ゆえに BHICA, CHLAB BHICA, CH⊥AB したがって, 点Hは△ABCの垂心である。 22

解決済み 回答数: 1