学年

教科

質問の種類

数学 高校生

上から4行目はなぜこうなるのですか?

基本 例題 29 漸化式と極限 (4) *** 連立形 00000 P1(1, 1), Xn+1 1 = 4 4 xn+n, In+1= 5 3 -xn+ 4 面上の点列 Pn(xn, くことを証明せよ。 指針 点列 P1, P2, yn) がある。 点列 P1, P2, 1 5yn (n=1, 2,......) を満たす平 がある定点に限りなく近づくことを示すには,lim, limyn がと はある定点に限りなく近づ [類 信州大 ] p.36 まとめ, 基本 26 n→∞ もに収束することをいえばよい。 そのためには,2つの数列{x},{y}の漸化式から Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意のようになる。) 811 Xn+1= 1 3 xn+ yn ①, Yn+1= 解答 4 1 x n + 1 − y n 5 Yn ② ①+② から Xn+1+yn+1=Xn+yn P1(1, 1) から x+y=2 x=1, y=1 よって xn+yn=xn-1+yn-1==x+y=2 ゆえに yn=2-xn これを①に代入して整理すると 11 Xn+1= xn+ 20 85 32 変形すると 11 32 Xn+1 xn 31 20 31 32 1 また X1 31 31 32 ゆえに Xn =- 31 31/ (-20 n-1 32 1 よって n→∞ また 32 30 limxn=lim no31 31 limyn=lim (2-x)=2- 1+0=and -20))} = 32 Q=-- a+ 32 31 数列{X-3は 1 |Xn+1= xn+ 特性方程式 11 20 8-5 の解 a= 公比 31 ラ 11 31 - 20 818 n→∞ 31 31 比数列。 y=2xから。 したがって, 点列 P1, P2, ...... は定点 31' 31 3230 に限りなく近づく。 一般に, x=a, y=b, xn+1=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる {x}, {yn} の一般項を求めるには, 次の方法がある。 方法1 Xn+1+αyn+1=β(x+αyn)としてα, β の値を定め, 等比数列{xn+yn} 用する。

未解決 回答数: 1
数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0