学年

教科

質問の種類

数学 高校生

(1)の1番下から2番目の行まで分かるんですがそこからなぜBD:DC=AB:ACになるのかが分かりません😖解説よろしくお願いします🙇

divide pile lack 不足 adiustだわる an 206 基本例題 128 三角形の内角の二等分線の長さ (1) (1) △ABCにおいて,∠Aの二等分線が辺BCと交わる点をDとするとき, BD: DC = AB : AC が成り立つことを証明せよ。 (2) △ABCにおいて, BC=6,CA=5, AB=7 とし, ∠Aの二等分線と辺 BCの交点をDとする。 (1) を利用して線分 AD の長さを求めよ。.m ŠVAŠKHÉMOE 120,121 CHART & SOLUTION 三角形の内角の二等分線の長さ ① 余弦定理の利用 2 面積の利用 三角形の内角の二等分線については, (1) のような性質がある。 この性質を利用して, (2) で は余弦定理を使って AD の長さを求める。 438160 ② 面積の利用は,後で学習する (p.214 基本例題 133 参照)。 解答 (1) ∠A=20,∠ADB=a とすると, △ABD BA Ply ( と△ACD において, 正弦定理により (75° 20180°-α 100 700m 455 BD sine AB sina' DC ACO sine sin (180°-a) in よって B sine sing AB, DC = BD:DC=AB:AC D sin (180℃~g) = sing であるから,これらを変形すると sine AC BD= sina C d DAA Const M asing B D CRE 図において, AD // EC と すると, ∠AEC=∠BAD =∠CAD=∠ACE から AEAC CHARTI FRISES 1 ABCに albco 三角形の 等式の証人 (2) に代 余 BE

未解決 回答数: 1
数学 高校生

151. θはどこの角?と思ったのですがどこからこの場所(3.の解答の図の場所)であると分かるのですか?

236 43 030000 基本例題 151/3倍角の公式の利用 半径1の円に内接する正五角形 ABCDEの1辺の長さをαとし,0=2. 080057 (1) 等式 sin 30+ sin20 0 が成り立つことを証明せよ。 (2) cose の値を求めよ。 り (3) αの値を求めよ。 (4) 線分ACの長さを求めよ。 時間 最 p.233 基本事項 指針▷ (1) 30+20=2πであることに着目。なお, 0 を度数法で表すと 72°である。 (2) (1) の等式を2倍角・3倍角の公式を用いて変形すると (1) は (2) のヒント {0} COSOの2次方程式を導くことができる。 0<cos0 <1に注意して, その方程式を解く (3), (4) 余弦定理を利用する。 (4) では, (2) の方程式も利用するとよい。 解答 (1) 0から 50=2π このとき したがって (2) (1) の等式から sin 0 0 であるから, 両辺を sin0で割って 3-4sin20+2cos0= 0 3-4 (1-cos20) +2cos0=0 4cos20+2cos0-1=0 The ゆえに 整理して sin30=sin(2π-20)=-sin20 sin 30+sin 20=0 よって 3 sin 0-4 sin³ 0+2 sin 0 cos 0=0 0 <cos0 <1であるから (3) 円の中心を0とすると, △OAB において,余弦定理により AB²=OA²+OB²-20A OB cos 05(1-02005){( AC > 0 であるから AC= cos 0=1+√5 4 =12+12-2・1・1・ -1+√5-5-√5 4 a>0 であるから a=AB= (4) △OAC において, 余弦定理により AC2=OA2+OC2-20A・OC cos 20 30=2π-2050=30+20 5-√5 2 +2. −1+ 4 (*) =12+12-2・1・1・cos20=2-2(2cos20-1) =4-4cos20=4-(1-2cost)=3+2cos 2 -1+√5 (2) の(*)から。 5+√5 V 2 練習 11 ) 0=18° のとき, sin20 = cos30 が成り立つ 3倍角の公式 sin30=3sin0-4sin't 忘れたら, 30=28+0とし て, 加法定理と2倍角の 式から導く。 (3) BA (4) B C C 2751 a 1 1 0 D め ※加注 でに (1) 0=36°のとき, sin30= sin20 が成り立つことを示し, COS 36°の値を求め ある 次 sin co:

回答募集中 回答数: 0