学年

教科

質問の種類

数学 高校生

44の問題が意味がわかりません。解説お願いします

標準」レイ 吸う 向か が、入 ニチ にい 11 条件と集合 42 [命題の真偽] 次の命題の真偽を答えよ。 (1) x=1ならばx+x2=0である。 (2)|x|>3ならばx>3である。 であるための必要十分条件である。 01482- 次の(1)(2)(3)(4)のそれぞれについて の中に適する番号を入れよ。ただし、 (1)の解答は①ではない。 (1)①は (2) □は②であるための十分条件であるが必要条件でない。 (3) □は③であるための十分条件であるが必要条件でない。 (4) □は②であるための必要条件であるが十分条件でない。 12 必要条件と十分条件 43 [必要条件と十分条件] [必修 テスト 次 ただしx,yは実数とする。 に適するものを下の①~④から選べ。 ① 必要条件であるが十分条件でない。 ②十分条件であるが必要条件でない。 ③ 必要十分条件である。 ④ 必要条件でも十分条件でもない。 (1) x=1であることは, x=1であるための (2)xy であることは,xy"であるための (3) x=yであることは, kx=ky であるための (4)x+y>2 かつxy>1であることは,x>1かつy>1であるための [必要条件 十分条件 必要十分条件] 実数a, b について、 次の5つの条件がある。 ① ab=0 ② a-b=0 ③ |a-b|=|a+6| ④a²+b²=0 ⑤a²-b²=0 20 1章 数と式 6140 140 13 逆・対偶 45 [否定] 次の条件の否定をつくれ。 (1) x < 0 または y > 0 (2) x=2かつy=1 46 [逆・対偶の真偽] 目 テスト 次の命題の逆・対偶をつくり, その真偽を答えよ。 「x=1 ならばx=x」 (U) HINT 42 命題が真であることは真理集合の包含関係からわかる。 偽の場合は、反例をあげる。 C 43gの真偽をはっきりさせる。 必要条件と十分条件を正しく判断しよう。 Q 1-14 44 la-bl=la+blは両辺を平方してみる。 1-14 45 「かつ」の否定は「または」 「または」の否定は「かつ」に変わる。 1-15 46 対隅の真偽はもとの命題の真偽と一致する。 1-16 12

回答募集中 回答数: 0
数学 高校生

丸で囲んだ所の解法について、 基本例題は普通に解けました、ですが練習問題だとは正しい答えは出せません。 どうしてでしょうか。

h これ 係数と fla- 絶対値を含む不等式の場合分けをしない解法 f(x) 以下では,第2章 「集合と命題」 の内容も含むため、その学習後に読むことを推奨する。 ||x|<c-c<x<c 絶対値を含む不等式は、 場合に分けて解くのが大原則であるが, 例題41 (1)~(3)6 ) | | x/ > c = x <- c & fc<x |A|<B⇔-B<A<B 次の不等式を解け。 (1) x-1|+2|x-3|≦11 (z)を微分するという. また. 基本 例題 42 絶対値を含む1次不等式 (2) ①①①①① ((1) 西南学院大, (2) 大阪経大) (2)|x-7|+|x-8|<3 基本41 (1) x-310 x-320 120円 指針 (1) 2つの絶対値記号内の式が0となるxの値は x=1,3 よって, x<1, 1≦x<3, 3≦xの3つの場合に分けて解く。 (2)2つの絶対値記号内の式が0となるxの値はx=7,8 よって, x<7, 7≦x<8, 8≦xの3つの場合に分けて解く。 73 不等式の形によっては, により、場合分けをしないで解くこともできる。 (cは正の定数)を利用す ここでは、cが一般の文字式の場合、 つまり x Date A>BAK-BまたはB<A |x-4|=max (x-4, 4-x) 実数 α, bのうち大きい方 (厳密には小さくない方) を max (a,b)と表すと ⇒ max(ヌ-11-x)+2max(x-3.3-x) 例1 x-4/<3x⇔-3x<x-4<3x <) max13x-7-x+5 ・1-5-3x+7)=11 -lx-4|<3x max (x-4, 4-x)<3x よって 一般に,xが実数のとき|x|=max (x, -x)である (*)を示す。 ⇔x-4<3x かつ 4-x<3x x-4<3xx-4>-3x cas ⇔-3x<x-4 <3x 補足条件p: 「x-4|<3xかつ 3x≦0」, 条件g: 「-3x<x-4<3x かつ 3x≧0」 を満たす 体の集合はともに (空集合) である。 30の場合にも(*)は成り立つ。 例2 x-4>3x⇔x-4<-3x または 3x <x-4 ...... (空集合)は任意の集合の部分集合であるから, g, g⇒pはともに真とない (**) を示す。 17.x-11+21x-31=11 max(+2(3)、X-1+213-x)、1-x+2(x-3)(x+2(3-x) ≦11) 4 3x-7311 かつ一が≦11かつ×5≒いかつ-3x+7≦11 27かつ 4 -6 16 X3-6かつ16から水3-3 4 ミカミワ lx-4|>3xmax (x-4, 4-x)>3x 「a, bのうち大きい方よ ⇔x-4>3x または 4-x>3x さい」とき,c<a<b,c<b いう場合以外に,a<e<b ⇔x-4>3x または x-4<-3x ⇔x-4<-3x または 3x <x-4 b < c <a という場合がある。 [補足] 3x<0の場合, x-4>3%は常に成り立ち、 「x-4-3x または3x<x-4」も常に甘 立つ。 よって, 3x < 0 の場合にも(**)は成り立つ。 [参考] 絶対値を含む式が2つある場合について,上で紹介した記号 max を用いると |A|+|B⇔max(A,-A)+max (B,-B) max(A+B, A-B, -A+B,-A-B) であるから,Cの正負に関係なく、次のことが成り立つ。 [A]+[B]<CA+B<C かつ A-B<Cかつ A+B<Cかつ-A-B<C [A]+[B]>CA+B>CまたはABC または A+B>CまたはA-B>C (2)1-7+12-81-3 max (7-7. 7-x) + max (x-8 8-X) <3 max(x-7+7-8、メー7+8-x、ワース+スー8、ワーメな火)<3. max(2x-15,1,-1,-2x+15)<3 よって、 2x-15くろかつ1cろかつてくろ、かつ-2x+153 x9 かつ46 6 < x < 9.

未解決 回答数: 1
数学 高校生

この問題はなぜf(x)=の判別式の値をもとめるのですか?

25 とグラフ 常に成り立つ2次不等式 RE 常に成り立つ2次不等式とグラフ コツ 28 2次不等式f(x)>0やf(x)≦0などが常に成り立つ条 件を求める問題では, y=f(x)のグラフを考えて 「常に0より大」 ということは, グラフにすると? その発想が大切。 例題 3-38 定期テスト 出題度 900 共通テスト 出題度 任意の実数に対して次の不等式が成り立つとき、定数kの値 の範囲を求めよ。 (1) 2x-8kx+13k²-20>0 (2) kx²+(2k-4)x+2k-750 (k=0) ●上に凸か下に凸か ② f(x)=0としたときの判別式Dの値 の2点に着目する。 さて、2次関数y=f(x) のグラフは以下の6つのどれかになるんだ。 判別式 は3-1で説明したから, 忘れてたら復習してね。 ○0 「なんか難しそう………………。」 1-20 の最後で勉強したね。 “任意の” は, "どんな○○でも” や “すべての ○○で”という意味だよ。 (1) 「はい、それは覚えてますけど、 “すべてのxで不等式が成り立つよう にする”なんて、どうやって考えればよいのですか?」 こういった問題は2次関数のグラフを使って解いていくんだよ。 「どうやって使うんですか!?」 具体的に進めていけばわかるよ。 まず手順をコツにまとめておくね。 y=f(x) y=0 (軸) f(x)=07"D>0 D=0 D<o 下に凸 I I 上に凸 (1)なんだけど, “常に正” ということは、上の6つのグラフのどれ 「⑤ですか?」

未解決 回答数: 0