学年

教科

質問の種類

数学 高校生

(1)も(2)も違うんですが、私の解き方は何が違うのかわかんないです💦

PILO Op PLASTIC 追加 スマートフォン 例題解説動 入の方は追加 ※解説動画は、 年4月までに順 80 重要 例題 44 解と係数の関係と式の値 解のおき換えを利用 | 2次方程式 2x2+4x+3=0の2つの解をα, β とする。 このとき, | (α-1)(-1)=であり,(α-1)+(B-1)=である。 [慶応大 基本4 指針 α+β, αβ で表し,解と係数の関係の利用の方針では、(イ)の計算が大変。 そこで, α-1=y, B1=8 (8は 「デルタ」と読む) (イ)はy*+8 の値を求める問題となる。 ここで ①から α=y+1,β=8+1 ② ① とおくと, (ア)は2 また,α,Bは2x2+4x+3=0 ③の解であるから,②③に代入して整理する ※解説動画は、 2次元コード と 2y2+8y+9=0, 282+88+9=0 すなわちは2次方程式 2x²+8x+9=0 の解である。 α-1=y, β-1=δ とおくと α=y+1,β=8+1 解答 α β は 2x2+4x+3=0の解であるから, y, δは2次方程α, β に対し, α-1,B-1 ①の解である。 式 2(x+1)+4(x+1)+3=0 ・・・ 基本 例題 45 2次方程式ャー めよ。 (1) 1つの解が- 指針 解の公式 係数(定 2つの解 (1) 1つ よっ (2) も同 CHAI 青チャー 日常学習 入試対策 選び抜かれ あり 効率 種々の解訓 学の知識 ① の左辺を展開して整理すると 2x2+8x+9=0 解と係数の関係から y+8=-4, yδ= 9 を解とする2次方程式を 新たに作成する。 そして 作成した方程式に対し、 解と係数の関係を利用す る。 (1) 2つ 解答 解と信 すな (ア) (a-1)(B-1)=y8=1212 (イ) (α-1)*+(B-1)*=y'+8*=(y2+82)2-27282 ■考える力 ={(y+8)^-2r8}'-2 (yô ) 2 例題ページ 針をどの 問題の解 法にたど えること 2x²+4x+3 =2(x-α)(x-β)の両 辺にx=1を代入して 2-12+4.1+3 =2(1-α) (1-β) ゆえ (2)2- 解と すな ①カ ② これから求めてもよい。 した おき換えないで解く =(16-9)-31-17 上の解答のように,Y, δとおき換えず,次のように答えてもよい。 解と係数の関係より、 a+β=-2, aß=1232 であるから ダ どこでも 検討 3 エスビュー 書をタブレッ いつでも, また デジタルなら ゆえに よって (a-1)(B-1)=aß-(a+B)+1=32-(-2)+1= (-1)+(B-1)=a+β-2=-2-2 = -4 (-1)+(B-1)={(a-1)+(B-1)-2(α-1)(B-1)=(-4) -2.1=7 (3-1) = ここでも α-1, β-1を1つのかたまりとして見ることが大切である。 練習 2次方程式 x2-3x+7=0の2つの解を 92 2 POINT 2解 検討 検算 例え ゆえ 解答 練習 (1) ② 45

解決済み 回答数: 1
数学 高校生

この問題ですが、どうして私の解き方(写真2枚目)ではダメなんでしょうか。共通解をx=αでおく意味がわかりません。

3章 12次方程式 00 重要 例題 102 2次方程式の共通解 0000 2つの2次方程式2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め,その共通解を求めよ。 基本97 2つの方程式に共通 な解の問題であるから,一方の方程式の解を求めることができ たら,その解を他方に代入することによって、 定数の値を求めることができる。しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 要 122 指針 解く。 つのは、 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると ①, a2+α+k=0 ② 2a2+ka+4=0 これをαkについての連立方程式とみて解く。 ②から導かれる k=-α-α を ①に代入 (kを消去) してもよいが,3次方程式と なって数学Ⅰの範囲では解けない。 この問題では, 最高次の項である2の項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 HART 方程式の共通解 共通解を x=α とおく 共通解を x=αとおいて, 方程式にそれぞれ代入すると 2a2+ka+4=0 ①-②×2 から を解く 解答 ①(笑 a2+α+=0 ...... ② (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 171 ずに から ! 0 を除い 34 うな定数k をもつよ α² の項を消去。この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 2つの方程式はともにx'+x+2=0 となり, この方程式 数学Ⅰの範囲では、 の判別式をDとすると D=12-4・1・2=-7 D< 0 であるから,この方程式は実数解をもたない。 ゆえに2つの方程式は共通の実数解をもたない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x26x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 よって、2つの方程式はただ1つの共通の実数解 x=2 以上から k=-6, 共通解はx=2 x²+x+2=0の解を求め ることはできない。 ( < α=2を①に代入しても よい。[] 注意 上の解答では,共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 練習 2つの2次方程式x'+6x+12k-24=0, x2+(k+3)x+12=0がただ1つの実数を 9102 共通解としてもつとき,実数の定数の値はであり,そのときの共通解は である。 p.173 EX73、

解決済み 回答数: 1
数学 高校生

2の(3)の解説に線を引いた部分がわからないです

実 擬力 Date k=2が2直 テスト2 2次 2 13 ①と問題を比較をして, a, b, c, 2+ 4+ 13 dの値を探しましょう. 1 1 1 1 a+ 2+ 1 2+ ⑥ + 1 1 1 4+ C+ 3 d 以上より 傾きを求めて y=ax+b に代入 y切片を求めて完成してもよい 点A(-3, 9), C (4, 16) を通 (4,16) る直線 C y-9=- 9-16 -3-4 {x-(-3)}より A (-3, 9) B(1,1) y=x+12 0 a=2,b=2,c=4,d=3 となります。 点B(1, 1), 点C (4, 16) を通る ② x = 2 答え: α = 2,6= 2,c=4,d=3 直線 y-1= 1-16 1-4 (x-1)よりy= 5x-4 2 解答・解説 2 右図の斜線部分に含まれる点 (x,y)でx,yともに整数となる ものについて考える。 周上の点 も含むと考え、次の問いに答え なさい。 y=x2 (4, 16 A 今回の題意からx, yが共に整数であることを踏まえて, x=2の直線 上にあるyの値に着目します (図の赤い部分). すなわち "x=2と直 ②の交点”以上 "x=2と直線の交点” 以下にあるyの整数値の 個数より 5×2-4≦y≦2+12 ②にx=2を代入 ①にx=2を代入 これより6≦y≦14 (-3, 9) B(1, 0 この範囲でyの値が整数になるのは y=6,7,8,9,10,11,12,13, 14の合計9個. (2)直線上には何個ありますか。 ◆解答・解説◆ (2) 地道に数えていくのも1つの方法ですが、今回は計算で解いてみま (3) 斜線部分内には何個ありますか。 す.x=2が2直線と交わるのでその交点のy座標に着目します。 2点(x1,y1)(x2,y2)を通る直線の求め方は y-y1= y-y2 -(x-x1) X1-X2 で求められる. ので、 05 ◆解答・解説 答え: 9個 (3)(2)の解き方を応用して x=-3からx=4までについて」が整数値 をとる個数を計算で出してみましょう. A(-3, 9),B(1,1) 84 85

回答募集中 回答数: 0