学年

教科

質問の種類

数学 高校生

数学IIIの双曲線の分野の問題です。 双曲線の接線の式の求め方で、 解答の求め方では①双曲線の式から傾きを求める②傾きaで点(x1, y1)を通る直線の式の公式 によって接線の式を求めているのですが、 僕は双曲線の接戦の公式をそのまま使いました。 そしたら結果が異なってしま... 続きを読む

14:14 12月17日 (日) × No 化学 | 双曲線 : 数学B ⑩傾き既知接線の定数決定 22 y² 4x1 Y₁ 16 64 m を実数とし, 直線l: 2(m²+1)x- (m2-1)y=16m を考える. を 1/1の1次式で表せ (ウ) 直線lがC上の点(第1,3/1)に接するとき [Ra] 4キロのとき 4x1 y=- (x-x)+y1 を満たすときである。 数学III y₁y=4x₁(x-x₁) +y₁² JA 4x-yy=4x²-y12 であり、 これは1=0のときも成り立つ。 直線がこの接線と一致するのは0でない実数kが存在して [2(m²+1)=4xik m²-1=y₁k3 16m=(4x²-yl) ④ 7/33 数学III =1 について, 以下の問いに答えよ. ② より m²+1=2xk ......②' なので, ②③ から(ペール 2 = (2x₁-y₁) kN DES BUCALLA |(dy = ピ よって ④より m= 13-- n (4x²-y₁²) k 16 × (2x+y)(2x-yi) k 16 2x+yi 8 数学A 2x1+11.2 16 -Point! 実数kを 係数比車 2x₁+y₁. (2x1-y₁) k 16 ・・・・・・ () ・接線 Yıy 64 mxix-myly=16m x 21 m ² MIL. myc ℓ:2(mati)xc-(m²-1)y=16m と係数比較して、 mxci=2(m2+1) ニー(m'-`) my : Y = 42₁₁ "ti ①を②に代入して、 m= -1 ①. -=-1)} 2 my12mxi-8 TAH ② 8 20-YI Y! P .x.. I............ 64. : 75% 完了

回答募集中 回答数: 0
数学 高校生

242.2 厳密には RC:AC=1:√3、∠ACR=90°より∠ORA=π/3... ということですよね?? また、記述はこれでも問題をないですか?(写真2枚目)

370 00000 基本例題 242 放物線と円が囲む面積 放物線L:y=xと点尺(0.2/24) を中心とする円Cが異なる2点で接するとき (1) 2つの接点の座標を求めよ。 CASATREON (2) 2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面積S [類 西南学院大]基本 237 を求めよ。 指針▷ (1) 円と放物線が接する条件をp.156 重要例題102 では 接点重解で考えたが, ここでは微分法を利用して,次のように考えてみよう。 LとCが 点Pで接する点Pで接線l を共有するRPl (2)円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを考え するとるとよい。 半径が,中心角が0(ラジアン)の扇形の面積は 12/20 b÷d 解答 (1)y=x2 から y'=2x LとCの接点Pのx座標をt (t=0) とし, この点での共通 の接線をl とすると, lの傾きは 2t √3 2 5 1²- 点と点P(t, t2) を通る直線の傾きは 4t2-5_ RP⊥l から 2t - -=-1 ゆえに t= 4t PROTECC = 4 4t²-5 4t t-0 よって t=± (2) 右図のように, 接点A,Bと点Cを定めると, RC:AC=1:√3 から ∠ORA=- =, RA=2.( Lと直線AB で囲まれた部分の面積をSとすると S=S+ △RBA- (扇形 RBA) ーπー ・12. /3 --√²/(x+√3)(x-√3) dx + √3-5 ゆえに、接点の座標は (2) (-4) y Ly=x) / 3 4 2 =1 π =-(-1) { ¹3³-(-√3)² + √¹3³__3√3_7B_S 4 3 O y B R fp 0 0 A

回答募集中 回答数: 0