学年

教科

質問の種類

数学 高校生

この解説を見せて頂けませんか? 出来れば明日までに知りたいです! 重要問題演習38P,60.61

38 箱の中に10本のくじが入っており、そのうち3本が当たりくじである。 このくじを10人が1本 つ順に引くとき,次の確率を考える。 ただし、引いたくじはもとに戻さないものとする。 RIPRE ① 3番目の人が当たりくじを引く確率 ②7番目の人が当たりくじを引く確率 ③ 3番目の人と7番目の人が当たりくじを引く確率 ア ナ (1) まず, ①について考える。 1番目 2番目 3番目にくじを引く人が当たりくじを引く事象をそれ ぞれA, B, C と表し, P(C) の値を求めよう。 P(A)= イウ P(A∩B∩C)= 難易度 ★★★ 引く条件付き確率はPA(B) = 引いたとき, 3番目の人も当たりくじを引く条件付き確率は PanB(C) = カ キ の解答群 である。 また,1番目の人が当たりくじを引いたとき, 2番目の人も当たりくじ 0 10 C3 コの解答群 9C₂ ア ウ 9P2 目標解答時間15分 × ① 10P3 エ オ である。 ①について, 左から3番目に当たりくじがある並べ方は 人が当たりくじを引く確率は ク ケコ I である。さらに、1番目と2番目の人がともに当たりくじを カ SELECT SELECT 90 60 ある。 しかし、同じやり方で②,③を考えることは難しい。 そこで、 別の試行に置き換えて考える。 10本のくじをk1,k2, ......, kio と表すことにし,k1,k2,ks が当たりくじであるとする。この ■本のくじを横一列に並べる試行を考える。この試行において, くじの並べ方の総数は サ 通 シ通りあるから3番目 である。他の場合も同様に考えると,P(C) = である。 ② 10P7 ③10! であるから, ②39P2 ③ 9P7 ④ 39P7 ⑤9! ク 3.9! で コ (3) 当たりくじを◯, はずれくじを●で表すことにし、3個の○と7個のを横一列に並べる試行を 考える。○と●の並べ方の総数は ス 通りである。 ①について、 左から3番目に○がある並べ t 通りあるから3番目の人が当たりくじを引く確率は 方は ス ⑩ 10C3 Ł の解答群 率は ① 10P3 ② 10P7 ③10! の解答群 9C2 ① 9P2 ②3.9P2 ③ 9P7 4 3.9P₁ ク ケコ (2) (3) のいずれかの考え方を用いると、 ②について, 7番目の人が当たりくじを引く確率 ツ と求 [ニヌネノ である。 ソ は ■タチ めることができる。 (4) これまでの箱とは異なる箱に100本のくじが入っており, そのうち10本が当たりくじである。 このくじを100人が1本ずつ順に引くとき, 3番目 7番目 100番目の3人が当たりくじを引く確 ⑤ 9! ⑥ 3.9! である。 であり、③について, 3番目の人と7番目の人が当たりくじを引く確率は ■テト (配点 15) 38 43 <公式・解法集 35

回答募集中 回答数: 0
数学 高校生

絶対値の不等式の問題です。この不等号に=がつくときはプラスで、つかないときはマイナスの時って認識しております。それで(1)、(2)もとけているんですが、何故か、(3)からそれが違くなります。マイナスなのにイコールがつきます。どなたか教えてください。

|離席などの行為は、事故やトラ 0 日曜日 祝日の下記時間帯分の 1→ 105 次の方程式、不等式を解け。 □(1) | x+2|=6 噂 312-x≤4 frer 106 次の不等式を解け。 8≤|x-1|<9 (x-11 スタッフが入口で①クールから順に整理券を配布します。 ①クール分の配布が終了しましたら、②クール分、③クール分を配 その日の全クール分の整理券がなくなり次第配布終了となります。 整理券はお1人様1枚のみ配布します。 文字が左右 (7) 90(<9 =(1)) (-1 < 8 8 Day 演習 AA44 107 次の方程式、不等式を解け。 □(1) 2x-3=|x+1| 7314-3x|≦x 絶対値 AAAD '108 次の方程式 不等式を解け。 100|x|+|23|=3 口 (2) 1 V 3 1 2 3 1次不等式 12x+315 p.40 14. p.41 15 □ (2) 3x+2=2x-1| 414x31>-x+7 2x+3<3<5<2X*} p.42 例題 14 p.43 例題2②22 □②x-1|-|x|=2x x-1/+16-221>5 (4) |x-1|+|x+315 ISSISto 値記号の中の式の値が2つとも0以上の場合と、1つは0以上で1つは負 の場合と、両方とも負の場合に分けて考える。 P=la-s|xk| 578 109 P=√a-10a+25+164 +16 について 次の問い □(1) Pを絶対値記号を用いた式で表せ。 について、 口 (2) P=2となるαの値をすべて求めよ。 Passist B (1) は まず根号の中の式を因数分解する。 (2) は, 得られた α の値が場合分けの条件を満たすか確認する。 XZ- 578-> (24) 579> (3≤X<1) OX(うなったく すべてがすっ 579 23 27 (1) X<Y X<o + Œ XCL O + 0=X<3 3/5 6-2x XCO, 0≤x C1. Il f 13 + Isi なんで≦くろ、3 ではないのか ⑨ KX33Xになっています

回答募集中 回答数: 0
数学 高校生

この解き方はなぜダメなんですか?

3 10 経路の問題— 右図のような格子状の街路がある. A点からB点まで最短距離で移 動する.図の格子点で,右へ行く確率は 1 点からB点まで行くとき, P点, Q点を通って行く確率をそれぞれ求め ただし, ひとつの方向しか行けない場合は確率1でその方向に進む.A よ. (類 中部大・工) A 経路1つ1つは同様に確からしくない この問題で注意することは 「ひとつの方向しか行けない場合(右図の○印の点)は確率1でその方向に 「進む」である. このため,経路の1つ1つは同様に確からしくならない. 例えば右図の R1 のように移動する確率は,○印の点を5回,それ以外の 点は(A を含めて) 4 回通るので,15×(1/2)" であり, R2 のように移動する Xが上端のときx+ X1Z LIC 4 do 1 y 2 YI これを用いて各点に到達する確率を書き こんでいくと右のようになるから、答えは P... - 2' 解答 下図の点X, Yに到達する確率がそれぞれx,yのとき, Zに到達する確率は, Y は右端でない点 1 12%,それ以外のとき 1/12 (x+y)である. Q... 35 128 確率は1°× (12) である。ここでは書きこみ方式(場合の数の O10 参照) で解いてみるが, 〇印の点を何回通るかを考えて計算してもよい。 必ずBに到達する 上側と右側がカベになっているので,必ずBに到達する. つまり,「Q を通っ てBに行く確率」 は 「Qを通る確率」 であり, QBは考える必要がない. 問題文に惑わされないよう にしよう. X 2 x Iz y 2 Y 1 16 1 8 1 4 A 6 32 4 16 上に行く確率は -00/00. 3 2 4 1 2 22 64 10 32 6 16 30/00 8 to (1+5) 1 4 10 演習題 (解答は p.52) 右の図のように東西に4本, 南北に6本の道があり,各区画 は正方形である.P,Qの二人はそれぞれA地点,B地点を同 時に同じ速さで出発し、 最短距離の道順を取ってB地点, A地 点に向かった. ただし, 2通りの進み方がある交差点では, そ 12/2 であるとする. P.QがC地点で れぞれの選び方の確率は 64 128 20 64 P 10 32 4 16 1 8 西 A Q 1 15 64 15 32 16 とする. 北 南 ●B 35 128 1(4-09114 C R1 出会う確率は(1) である.また, どこか途中で出会う確率は(2) である.. B R2 東 (北里大薬) P Q B B (2) は, 出会う地点をま ず求める。 図の対称性も 活用したい . 43

回答募集中 回答数: 0
数学 高校生

122.1.イ 記述これでも良いですか? また、記述問題だとしても(mod12で8^2 ≡4と8^4≡4より2k乗とした)解説の方法で解いて良いのですか? (8^2 ≡4と8^4≡4より感覚的にはmod12で8の2k乗≡4は分かるけど2つの例だけで2k乗とおくのは証明が不足... 続きを読む

は る)。 D a うる。 る。 ) pk k 2 2 演習 例題 122 合同式の利用・・・ 累乗の数の余り 合同式を利用して,次のものを求めよ。 ア) 13100 9で割った余り (イ) 20002000を12で割った余り [(イ) 早稲田大〕 (2) 472011 の一の位の数 (2) 類 自治医大] 指針 乗法に関する次の性質を利用する。 a=b (mod m), c=d (mod m) のとき 3ac=bd (mod m) (1) 累乗の数に関する余りの問題では、余りの周期性に着目することがポイントである。 また、合同式を利用して、 指数の底を小さくしてから, 周期性を調べると計算がらくに なる。 ・・・・・・ 注意 α” のα を指数の底という。 解答 (1) (ア) 134 (mod9) であり 4² 16 7 (mod 9), 4°=64=1 (mod 9 ) ゆえに |42100=4.(43)=4 (mod9) 特に,a=1 (mod m) となるようなnが見つかれば、問題の見通しがかなり良くなる。 (2) ある自然数Nの一の位の数は, N10で割ったときの余りに等しい。 したがって, 10 を法とする剰余系を利用する。 CHART 累乗の数を割った余りの問題 余りの周期性に注目 よって したがって 求める余りは 4 13100=4100=4 (mod9 ) 4 自然数nに対し α"=6" (mod m) (イ) 2000=8 (mod12) であり 8°=8.4=8 (mod 12), ゆえに,kを自然数とすると よって 82=64=4 (mod 12), 8'=(82)=42=4(mod 12) 82k4 (mod12) 20002000=820004 (mod12) したがって 求める余りは (2) 477 (mod10) であり 7³ 9-7=3 (mod 10), ゆえに よって 472011 720113 (mod10) したがって 47 2011 の一の位の数は 7 72 49=9 (mod 10), 7=92=1 (mod 10) 72011 (74) 502.73 1502.3=1-3=3 (mod 10) 00000 p.492 基本事項 [③3] 3 次のものを求めよ。 13-49 であるから, 13 と4は9を法として合同で あることに着目し, 4 に関 する余りを調べる。 132, 13 を9で割った余り を調べてもよいが, 一般に 42 4の方がらく。 2000" の計算は面倒。 2000 12で割った余りは 8 であるから 2000 と8は 12 を法として合同。 したがって, 8" に関する余 りを調べる。 47=10・4+7 2011=4・502+3 15245 (イ) 30003000 を14で割った余り 495 4章 19 発展合同式 る。 る。 2) -1) でる たと は、 は, な 満 3進

回答募集中 回答数: 0