学年

教科

質問の種類

数学 高校生

解説お願いします。 数学的帰納法の問題です。 写真の紫マーカーのところで、nにk+1を代入するはずなのにnにkを代入しているようにみえます。 私はどこの部分で間違えた考えをしているのか教えていただきたいです。 よろしくお願いします。

[頻出 例題 324 数学的帰納法 〔5〕… 漸化式から一般項を推定して証明 ★★★☆ a1 = -1, an+1 =an2+2nam-2 (n = 1, 2, 3, ...) で定められた数列 {a}について (1) 2, 3, a をそれぞれ求めよ。 (2){a}の一般項を推定し, その推定が正しいことを,数学的帰納法を用 いて証明せよ。 思考プロセス 規則性を見つける a1=-1 ②より a2= ⑦より - an = f(n) と推定 a4= ⑦ より ⑦ より ⇒ 推定が正しいことを数学的帰納法で示す。 [1] n=1のとき正しいことを示す。 [2] n=kのとき正しいと仮定して, ...=f(k+1) を示す。 koken=k+1のとき より 4k+1=... noibA Action» 複雑な漸化式で表された数列の一般項は,推定し数学的帰納法で示せ 解 (1) 与えられた漸化式に, n = 1, 2, 3 を順に代入すると a2= a +2・1・α1-2=(-1)+2・(-1)-2=-3 as = az2+2・2・az-2= (-3)2+4・(-3)-2=-5 a = a32+2・3・α3-2=(-5)2+6・(-5)-2=-7 (2)よりan = -2n+1 … ① と推定できる。 hes I [1] n=1のとき a1 = -2・1+1= -1 よって, ① は n=1のとき成り立つ。 [2]n=kのとき, ①が成り立つと仮定すると ak = -2k+1 n=k+1 のとき,与えられた漸化式よりは -Vaas ak+1=ak2+2kak-2 =(-2k+1)2+2k(−2k+1)-2 = -2k-1 = −2(k+1)+1 よって,①はn=k+1のときも成り立つ。 [1], [2] より,すべての自然数nに対して, a = -2n+1 が成り立つ。 {a} は, 初項-1, 公差 -2の等差数列であると 推定される。よって, そ の一般項 α は an=-1+(n-1) (2) = -2n+1 と推定できる。 漸化式に仮定の式を代入 する。 ①の右辺に n=k+1を 代入した形になっている ことを明示する。

解決済み 回答数: 1
数学 高校生

(2)をどうやって求めるか教えてください

6 次の図において、 △ABCは正三角形であり、点DはAC上にある。 また、四角形ADEFはひし形で あり、 AF // BC である。 辺DEと線分CF の交点をG とするとき、 次の問いに答えなさい。 (1) △ABD∽△EFG であることを以下のように証明した。 空欄に最も適するものを下の語群からそれぞれ選び、 番号で答えなさい。 ただし、 同じ文字の空欄には同じ ものが入る。 (証明) ABD と ACF において △ABCは正三角形であるから AB=AC 【語群】 (i) Z (ア) =∠ACB=60°・・・・・・(ii) 四角形ADEFはひし形であるから AD = AF・・・・・・ (iii) ZCAF= (イ) (iv) 仮定より、 AF // BCであるから B =∠CAF・・・・・・ (vi) <CAF = ∠ACB (錯角) ...... (v) (ii), (v)より、 ∠ (ア) (ウ) () F E (i), (), (vi)より、 がそれぞれ等しいから AABDAACF よって、 ∠ADB= ∠ (エ) (vii) △ABD と EFG において AF // DEより、 ∠ (エ) = ∠EGF (錯角) (viii) (vii), (viii)より、 ∠ADB= ∠EGF (ix) △ また、(iv), (vi)より、 ∠ (ア) =2 (イ) (x) (ix), (x)より、2組の角がそれぞれ等しいから AABDAEFG (証明終わり ) (ア) ① ADE ② BAD ③ ADB (イ)・・・・・・ ① AFG ② CDG ③ ADB ④ CAF ④FEG (ウ) ・・・・・・ ① 3組の辺 ② 2組の角 ③ 2組の辺とその間の角 ④ 1組の辺とその両端の角 (エ)・・・・・・ ① AFC ② CGD ③ CAF ④ BDC (2)AD:DC=4:3のとき、 BCD と △CDG の面積の比を、 最も簡単な整数で求めなさい。 49:12 -5-

解決済み 回答数: 1
数学 高校生

この問題の2枚目の式の解き方が分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

-88 (106) 第1章 数列 例題 B1.52n=k-1, k を仮定する数学的帰納法 **** x=t+1 とし,P,=1+ t" 1 とおく (n=1,2,・・・・・). このとき, P は x 考え方 解答 t 次の多項式で表されることを示せ. 自然数nに関する証明については, 数学的帰納法を用いる. まずはオーソドックスに 考えてみよう. (証明) (1) n=1 のとき,P,=t+1=x より成り立つ. (I)n=k のとき,Px=+==(xk次の多項式)と仮定すると, 1 n=k+1 のとき, Pato=t+1+- (+)-(++) (+)- =xPk-Pk-1 ここで,Px=(xk次の多項式) と仮定しているから,xPはxの(k+1)次の多項式で ある.しかし,P-」については,何次式なのか、xの多項式なのかもわからないつまり、 P& だけではなく、Pa」の次数についても仮定が必要になる.また,(II)で, n=k-1 とすると, n=1, 2,......であるから,k-1≧1 より k≧2 でなければならない。 wwwwwwwwwwwwww m (I) n=1 のとき,P,=t+==xより成り立つ. n=2のとき,P2=f+ 2=x2 より題意は成り立つ. (II)n=k-1,k(k≧2) について, 題意が成り立つと仮定する. IPkxの次の多項式 「Pk-1 は xの(k-1) 次の多項式 すなわち, で表されると仮定すると, Pati=tk+1+- tk-1. tk-1 =xPk-Pk-1 ここで, xPk は x×(xk次の多項式)より, xの (k+1) 次の多項式となり,P-1 は xの(k-1)| 次の多項式であるから, Pk+1 は xの (k+1) 次の 多項式となる. Ph-1 は xの (k-1) 次の多 式より, Pk+1 よって, n=k+1 のときも題意は成り立つ. (I) (II)より, すべての自然数nについて題意は成り =(x (k+1) 次の多項式 (x (k-1)次の多項 立つ 注》(I)でPがxの1次の多項式であることだけを示し, (II)の一般的な方法で, P2が 2次の多項式であることを示そうとすると, Po, P, が必要となり困る. (Poは定 れていない.)よって, (I)でP2 も調べておく必要がある. なお、下の練習 B1.52は, フィボナッチ数列の一般項に関する問題である. (p.B1-74 52 自然数とするとき.4.1/5(1+2)-1/5(25) は整数である

解決済み 回答数: 1
数学 高校生

この問題の2枚目の式のところの7m+7の7の部分はどこに行ったのでしょうか?誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

36 (104) 第1章 数 列 例題 B1.50 数学的帰納法 (3) 命題の証明 **** ”を2以上の自然数とするとき、パー"が7の倍数であることを数字を 帰納法によって証明せよ. 考え方 n-nが7の倍数 n-n=7×(整数) となる.このことを数学的帰納法を使って証明する. 解答) nin.......① とおく. (I) n=2 のとき, n-n=27-2 =126=7・18 よって, n=2のとき ① は7の倍数である. (II)(2)のとき ①が7の倍数であると仮定す ると, k-k=7m(m は整数) とおける. (日本女子大) 例 2以上の なので、最初の 2である. 考 このとき, n=k+1 のときの (k+1)-(k+1)が7 の倍数であることを示す. (k+1)^-(k+1) =k+Ck+C2k+7C3k+7C4k³+7C5k²+7C6k +1 -(k+1) (k+1)^(k+1) =7X (整数) となることを示 k-kは仮定より 7の倍数, =k+7k+21k+35k+35k+21k2+7k-k =(k-k)+7(k+3k + 5k+5k+3k+k) =7m+7(k+3k+5k+5k+3k+k) =7(m+k+3k+5k+5k+3k+k) ここで,m+k+3k+5k+5k+3k+k は整数なの で, (k+1)-(+1) は7の倍数である. 7(k+......)も 7の倍数 したがって, n=k+1 のときも①は7の倍数である. (I),(II)より,2以上のすべての自然数nについて ① は 7 の倍数である. Focus 自然数nに関する証明に数学的帰納法は有効である 注》整数αの倍数は,n (整数) を用いてan と表せる。 「αで割り切れる」 「α を約数にもつ」 「an と表せる」 となる. すべての自然数nについて, 22+6n-1 で割り切れることを証明せよ。

解決済み 回答数: 1
数学 高校生

この問題のここの式変換が分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

= 六 - (n-1) ]覚える 覚える!! 3 漸化式と数学的帰納法 (103) B 例題 B1.49 数学的帰納法 (2) 不等式の証明 . **** nが2以上の自然数のとき, 1+ 1 + 22 1 32 1 ++ <2- が成り立 n° n つことを数学的帰納法で証明せよ。 考え方 2以上の自然数について成り立つことを示すので、次のことを証明すればよい. (I) n=2 のとき, 不等式が成り立つことを示す. (II)=k(k≧2) のとき, 不等式が成り立つと仮定し、これを用いて,n=k+1 のと きも成り立つことを示す. 解答) 1+ 1 1 + + + <2- 22 32 1 1 ..... ① とおく。 n" n (I) n=2 のとき, 1 5 (左辺)=1+- 13 (右辺) =2- 22 4' 22 より, (左辺) く (右辺) となり, n=2のとき①は成り立つ. (II)n=k(k≧2) のとき, ①が成り立つと仮定すると, んは2以上の自然数 1 1 1+ + 22 32 n=k+1 のとき, 1+2+3 ・十 <2- k² (*) k 1 1 1 1 1 + ・+ <2 何を示すかを明記 k² (k+1)2 k+1. する. が成り立つことを示す. (右辺) (左辺) 1 1 1 =2- 1+ + (右辺) (左辺) > 0 を示せばよい. k+1 22 32 (k+1)2 1 >2- 2- + k+1 k (k+1)2 (*) の仮定を利用す るが,不等号の向き に注意する. 1 0 k(k+1)2- したがって, (右辺) (左辺) > 0 となり, n=k+1 の 書くならば, ->-> ときも①は成り立つ. (I) (II)より,2以上のすべての自然数nについて①は成り は2以上の自然数 だから, k(k+1)"> 1 立つ. よって, k(k+1)'' ocus 数学的帰納法の証明 一 何が仮定で(スタート), 何を示すべきか (ゴール) を明確に 注>> 例題 B1.49 や練習 B1.49 のように, n=1 から始まらず, 最初の数が n=2 や n= などとなる場合もある. 聞 (1) h>0 でnが2以上の自然数のとき, (1+h)">1+nh を証明せよ。 (東北学院 4以上の自然粉のとき 2"" を証明せよ。 p. B1-89

解決済み 回答数: 1
数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1
数学 高校生

ス、セなんですが、なぜ答えではこのような言い換えをしているのですか? 私はこの命題を満たすものを選べばいいと思ったので、⓪はすぐに消してしまいました。

〔2〕 正の実数aに関する次の三つの条件 Q, rを考える。 α は無理数である 1 g:a+ は無理数である。 9 a r:2+1/2 は無理数である なお,必要ならば,2,3が無理数であることを用いてもよい。 (1) 命題 「pg」 の反例であるものは D シ である。 命題 「pr」 の反例でないものは ス である。 シ の解答群 ス と の解答の順序は問わない。) a=1 ① a=√2 ?a= √3 ③ a=1+√2 ④ a=2+√2 ⑤ a=2+√3 (2)はgであるための ソ。 〔2〕 条件. Q.の否定をそれぞれ, Q. です。 (1)各選択肢のα.a+1,123の値は、次の表の通りである。 a a' 0 1 √2 (有理数)(無理数) √√3 1+√2 (無理数) 3√2 43 2 (無理数)(無理数) 2012の計算は、 3) とよい。 2+√2 2+√3 (無理数) a+1 2 a (有理数) 4 (有理数) 2 10 3 6 (無理数) 15+62 (有理数) (有理数)(有理数) 命題 「q」の反例は,かつ,すなわち (有理数) 2 (無理数) 14 (有理数) 3 2√2 6+√2 (無理数)(無理数) (無理数) a 「αが無理数 かつ a+ - が有理数」を満たすものである。 これを満たすのは⑤ 命題 「pr」 の反例でないものは、 またはr. すなわち 「αが有理数または+1/3が無理数」を満たすものである。 これを満たすのは^⑩⑩ (または 0, 0) (2) 命題 「rg」は真である。 (証明) 対偶」 が真であることを示す。 正の実数aに対して,a+1/2=x =xが有理数であるとすると、 a'+1=(a+1)-2=x2-2 も有理数である。 (1+√2)+ (1+√ 1+√2 =(2√2)^2=6 よって、 対偶 「!」 が真であるから,もとの命題 「r」も真である。 命題 「qr」は偽である。 (証明終) (2+√√2)+(2+ (2+√2+1 2+√ 19+6√22 15+6√2 (2+√3)+( (2+√3+2+ -42-2=14 √2. v23√2 2 2 は無理数であるが、 ソ の解答群 ⑩ 必要条件であるが, 十分条件ではない ① 十分条件であるが, 必要条件ではない (2) 必要十分条件である 必要条件でも十分条件でもない (数学Ⅰ 数学A第1問は10ページに続く。) L D (√2)+(v/zy=2+1/2=1/27は有理数であるから,a=√2 は反例である。 ゆえに は q であるための十分条件であるが, 必要条件ではない。(①) (参考)表中の1+√2 2+√2, 2+√3 などが無理数であることは,√2 √3 が無理数であることを用いて証明することができる。 例えば、 1+√2 が無理数であることは、次のように証明できる。 (証明) 1+√2 が有理数であると仮定すると, 有理数xを用いて 1+√2=x と表される。 このとき √2=x-1 右辺のx-1は有理数であるが, 左辺の2は無理数であるから, 矛盾 する。 したがって, 1+√2 は無理数である。 (証明終)

解決済み 回答数: 1