学年

教科

質問の種類

数学 高校生

1番最後の[1][2]から、というところですが、 なぜ(-1)ⁿではなく(-1)ⁿ+¹なんですか💦

例題 28 重要 に分けて和を求める 00000 一般項がαn=(-1)"+1n2 で与えられる数列{an} に対して,Sn=ak とする。 (1) a2k-1+a2k (k=1, 2, 3, ......) を ん を用いて表せ。 (2) Sn= (n= 1, 2, 3, ......) と表される。 k=1 次のように頭を2つずつ区切ってみると Sn=(12-2)+(32-4)+(52-62)+...... =b₁ =b₂ 指針 (2) 数列{an}の各項は符号が交互に変わるから,和は簡単に求められない。」 =b3 ****** 上のように数列{6} を定めると, bk=a2k-1+αk (kは自然数) である。 よってm を自然数とすると [1] n が偶数, すなわち n=2mのときはS2m2=(-1)として求め られる。 k=1 k=1 1 [2]nが奇数、すなわちn=2m-1のときは,Sam = Sim-1+α2m より S2m12m-a2mであるから, [1] の結果を利用して Szm-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) 2-1+a2x=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k [1]=2mmは自然数)のとき m m S2m=(a2k-1+a2k)=(1-4k) =m-4. m= =1であるから Sn -m(m+1)=-2m²-m =-2(2)-=-n(n+1) [2]=2-1(mは自然数) のとき 2m+1. azm=(-1)2 '(2m)'=-4m² であるから S2m-1=S2m-a2m=-2m²-m+4m²=2m²-m n+1 m=- であるから 2 S,=2(n+1)_n+1=1/2(n+1){(n+1)-1} = n(n+1) [1],[2] から Sn=(-1)+1 2 -n(n+1) (*) (-1) =1, (-1)=-1 ={(2k-1)+2k} ×{(2k-1)-2k} S2m= (a1+a2) +(as+αs) +...... +(a2m-1+a2m) Sm=-2m²-mに 2=1/27 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 S2m-1=2m²-mをnの 式に直す。 451 (*) [1], [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。 一般項がαn=(-1)n(n+2) で与えられる数列{an} に対して, 初項から第n項ま での和 S を求めよ。 1 章 ③種々の数列

解決済み 回答数: 1
数学 高校生

この解答はあっているか教えてください。よろしくお願いします🙇

・6番目の のデータ 3.28 (金) データの分析2 データを変えるとどうなるか 次の表は、あるクラスの生徒10人があるゲームをしたときの得点をまとめたも のである。 ただし, ゲームの得点は整数値をとり、表の数値はすべて四捨五入 されていない正確な値である。 中央館 生徒名 A B C D E F G HI J 平均値 27 得点 10 14 20 22 28 30 33 35 38 40 その後、得点を集計した際にデータの入力ミスがあったことが判明した。この 誤りを修正したところ、2人の生徒の得点がともに10点上がり、残りの8人の 生徒の得点は変わらなかった。 このとき、 以下の問に答えよ。 (1) 修正した後での、 10人の得点の平均値を求めよ。 (2) 修正する前と後で, 10人の得点の第1四分位数と第3四分位数の値はとも に変わらなかった。このとき,修正の前後で得点が変わった可能性がある 生徒は誰と誰か, すべての場合を答えよ。 (3)(2)で求めた場合のうち, 修正後での10人の得点の標準偏差が一番小さくな るものを答えよ。 37 30 50 (1) 10+(10+14 +10+12+18+20+ 23+25 +28+30)÷10 =10+190÷10 =10-19 =294 27×10 290 10 +20 90 50 29 サ (2)AとDAとIAとJ. (3)(i)AとOのとき 女 14,20,20,28,30,32,33,35,38,40 (1)AとⅠのとき S=8,074. (4,20,20,22,28,30,33,35,40,48 S=9,859 38 (ⅲ)AJのとき 14,20,20,22,28,30,33,35,38,50 S=10,05 2. A&D Aと

解決済み 回答数: 1
数学 高校生

この問題の場合分けのところなのですが、各場合分けの答えを出した後に「これはa<1を満たす」と言ったような文言が解答にないのはどうしてですか?

と、次の 3 3章 13 1 2次不等式 重要 例題 120 連立2次不等式が整数解をもつ条件 000 xについての不等式x2-(a+1)x+α <0,3x2+2x-1>0を同時に満たす整数x がちょうど3つ存在するような定数 αの値の範囲を求めよ。 t [摂南大〕 基本 37 117 ①まず,不等式を解く。不等式の左辺を見ると、2つとも因数分解ができそう。 なお,x2-(a+1)x+α <0は文字αを含むから, αの値によって場合を分ける。 ②数直線を利用して、題意の3つの整数を見定めてαの条件を求める。 CHART 連立不等式 解のまとめは数直線 x2-(a+1)x+a<0 を解くと (x-a)(x-1)<0 から α <1のとき a<x<1 α=1のとき 解なし α>1のとき 1<x<a ① 3x2+2x-1>0を解くと (x+1)(3x-1)>0から x<-1.1/23<3 ①,②を同時に満たす整数x がちょうど3つ存在するの は α <1 または α>1 の場合である。 [1] α <1 のとき 3つの整数xは x=-4, -3, -2 [1] (2) -51-4-3-2-1011 1α=1のとき,不等式は (x-1)20 これを満たす実数 x は 存在しない。 実数 A に対し A2≧0 は 常に成立。 A'≦0 なら A = 0 A°< 0 は 不成立。 基本 解答 0は2枚 なお、 別するた している。 よって -5≤a<-4 a [2] α>1のとき [2] a 8 3 13 2 x x <-5<a<-4としないよ うに注意する。 a<x<-1の範囲に整数 3つが存在すればよいか ら, a=-5のとき, -5<x<-1となり条件 を満たす。 ●3 4 3つの整数xは よって x=2,3,4 4 <a≦5 [1], [2] から, 求める α -1 0 1 2 113 の値の範囲は -5≦a<-4,4<a≦5 +5 [2]のα=5のときも同 様。 (01-)=(x2) 不等号にを含むか含まないかに注意 検討 上の例題の不等式がx2-(a+1)x+α ≦ 0, 3x2+2x-1≧0 となると, 答えは大きく違ってく る (解答編 p.96 参照)。 イコールがつくとつかないとでは大違い!!

解決済み 回答数: 1
数学 高校生

数Bの数列の質問です 聞きたいことは3つあります ①(1)の緑マーカーを引いている(2×2^(n-1)-1)はどうやって出てきたのか ②(2)の緑マーカーを引いている489項はどうやって出すのか ③(2)の黄色マーカーを引いているシグマの計算のやり方 この3つを教え... 続きを読む

例題 B1.29 群数列(2) ***** 2の累乗を分母とする既約分数を次のように並べた数列について, 1 1 3 2'4'4'8'8 5 13 3 71 5 15 ...... 8'8' 161604032 (1) 分母が2" となっている項の和を求めよ.xx (2) 初項から第1000項までの和を求めよ。 手大) 考え方 分数の数列は、分母と分子に着目する. この数列では同じ分母で1つにまとめる (2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 4個 いとか考える。S-8個目番 1個 2個 となっている.つまり, 分母が同じ数である項をひとつの群と考えると、第群には、 分母が 2" の分数が 2"-1個あることがわかる.さらに,分子に着目すると、 (7) 11, 31, 3, 5, 71, 3, 5, 7, 9, 11, 13, 15 となっている 解答 (1) 分母が2である分数をまとめて第ん群とする数 列を考えると, ) 200 となり、分母が 2" の分数は 27-1個あり 11 31357 3 5 15 | 1 2 4'4 8'8'8'8 16'16'16' S1 TOS 16 32' 1個あり、分子は初 項1, 公差2の等差数列になっているから、その和 は, 等差数列の和 n(a+e) S を利用 2 どうやって出てきた 2n 2"=2"-25 (2) 各群の項数は, 1, 2, 4, 8, 16, ・・よりは、 1-(2-1) 第n群までの項数の和は、 2-1 1+3+5+・・・ +(2.2"-1-1)22-2 分子 1+3+5+...... ので、第1 +(2·2-1-1) 2"-1 (1+2・2"- '-1) 2 =2"-11022-2 第1000項が第何群に入 どうやって出す? 2°-1=511, 2-1=1023 より 第1000項は第 10群の第489項なので,求める和は第9群までの 和と第10群の第489項までの和となる -2 3 9770+ っているかをまず調べる。 1 22-2は初項 公比 224+ (2+2+1+20001027 2の等比数列の初項から 第9項までの和 よって, k=1 びじゃないのに 1 (29-1) F どうやって計算? 11 + .489.(1+977) 2-1 2102 511 4892 500753 より 初項 1.末項 977, = ++ 2 1024 1024 2月1 Focus 分数の群数列は分母, 分子に着目して見抜く 1+3+...... +977 は, 項数 489 等差数列の和 **) ついて、

解決済み 回答数: 1