4
基本 例題12 ベクトルのなす角
1)かを正の数とし,ベクトルa=(1, 1) とあ=(1,一か)があるとする。いま,
ことちのなす角が 60°のとき, pの値を求めよ。
(2)&=(-1, 3), 6=(m, n) (mとnは正の数), |引=,5 のとき, aとbのな
す角は 45° である。このとき, m, nの値を求めよ。
33
[立教大)
p.400 基本事項4
指針> 内積a-5について,
a-5=a||||cos0, ā-b=a.b,+a,b.
の2通りで表し,これらを等しいとおいた方程式を利用する。
(1)ではp,(2) では m, nの値がいずれも正の数であることに注意。
解答
(1) a-5=1-1+1·(ーカ)3D1-
a=P+1 =/2, 万=/?+(-か)=1+が
a-5=a||||cos 60°から
成分による表現。
4(-- 2C1tp) l
2(FP))-1t
1-カ=V2 V1+がx
の
0の両辺を2乗して整理すると
が-4か+1=0
よって
ここで,①より, 1-カ>0であるから
カ=2±(3
pap10
く1+が>0 であるから,
のの右辺は正。よって, ①
の左辺は 1-カ>0
注意 ● が出てきたとき
は,かくれた条件●20,
●20に注意。
0<か<1
ゆえに
(2) =/5 から
よって
p=2-V3
万=5
m?+n°=5
の
a-(-1)+3° =/10 であるから
a-5=lá||||cos 45°=/10/5 -
=5
V2
また, a-b=-1.m+3*n=-m+3n であるから
COS
成分による表現。
ーm+3n=5
ゆえに
m=3n-5
2②
2を①に代入して
(3n-5)°+n°=5
よって
n?-3n+2=0
(n-1)(n-2)=0
n=1, 2 (n>0を満たす)大ケ
n=2のとき m=1
mも正の数であるから, 求める m, nの値は (
ゆえに
これを解いて
のから
n=1のとき m=-2,
m=1, n=2